39 research outputs found
Genome-Wide Identification of MicroRNAs in Response to Low Nitrate Availability in Maize Leaves and Roots
BACKGROUND: Nitrate is the major source of nitrogen available for many crop plants and is often the limiting factor for plant growth and agricultural productivity especially for maize. Many studies have been done identifying the transcriptome changes under low nitrate conditions. However, the microRNAs (miRNAs) varied under nitrate limiting conditions in maize has not been reported. MiRNAs play important roles in abiotic stress responses and nutrient deprivation. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we used the SmartArray™ and GeneChip® microarray systems to perform a genome-wide search to detect miRNAs responding to the chronic and transient nitrate limiting conditions in maize. Nine miRNA families (miR164, miR169, miR172, miR397, miR398, miR399, miR408, miR528, and miR827) were identified in leaves, and nine miRNA families (miR160, miR167, miR168, miR169, miR319, miR395, miR399, miR408, and miR528) identified in roots. They were verified by real time stem loop RT-PCR, and some with additional time points of nitrate limitation. The miRNAs identified showed overlapping or unique responses to chronic and transient nitrate limitation, as well as tissue specificity. The potential target genes of these miRNAs in maize were identified. The expression of some of these was examined by qRT-PCR. The potential function of these miRNAs in responding to nitrate limitation is described. CONCLUSIONS/SIGNIFICANCE: Genome-wide miRNAs responding to nitrate limiting conditions in maize leaves and roots were identified. This provides an insight into the timing and tissue specificity of the transcriptional regulation to low nitrate availability in maize. The knowledge gained will help understand the important roles miRNAs play in maize responding to a nitrogen limiting environment and eventually develop strategies for the improvement of maize genetics
Consulta de enfermagem em sexualidade: um instrumento para assistência de enfermagem à saúde da mulher, em nível de atenção primária
Prevalence of Epistasis in the Evolution of Influenza A Surface Proteins
The surface proteins of human influenza A viruses experience positive selection to escape both human immunity and, more recently, antiviral drug treatments. In bacteria and viruses, immune-escape and drug-resistant phenotypes often appear through a combination of several mutations that have epistatic effects on pathogen fitness. However, the extent and structure of epistasis in influenza viral proteins have not been systematically investigated. Here, we develop a novel statistical method to detect positive epistasis between pairs of sites in a protein, based on the observed temporal patterns of sequence evolution. The method rests on the simple idea that a substitution at one site should rapidly follow a substitution at another site if the sites are positively epistatic. We apply this method to the surface proteins hemagglutinin and neuraminidase of influenza A virus subtypes H3N2 and H1N1. Compared to a non-epistatic null distribution, we detect substantial amounts of epistasis and determine the identities of putatively epistatic pairs of sites. In particular, using sequence data alone, our method identifies epistatic interactions between specific sites in neuraminidase that have recently been demonstrated, in vitro, to confer resistance to the drug oseltamivir; these epistatic interactions are responsible for widespread drug resistance among H1N1 viruses circulating today. This experimental validation demonstrates the predictive power of our method to identify epistatic sites of importance for viral adaptation and public health. We conclude that epistasis plays a large role in shaping the molecular evolution of influenza viruses. In particular, sites with , which would normally not be identified as positively selected, can facilitate viral adaptation through epistatic interactions with their partner sites. The knowledge of specific interactions among sites in influenza proteins may help us to predict the course of antigenic evolution and, consequently, to select more appropriate vaccines and drugs
Diversidade de Anuros (Amphibia) na reserva extrativista Lago do Cedro e seu entorno, Aruanã, Goiás
Bite force evaluation in subjects with cleft lip and palate
The purpose of this study was to evaluate the masticatory function of subjects with cleft lip and palate by analyzing the bite force developed by these individuals. Bite force was evaluated in a group of 27 individuals with repaired unilateral cleft lip and palate (14 males and 13 females - aged 18-26 years) and compared to the data achieved from a group of 20 noncleft subjects (10 males and 10 females - aged 18-26 years). Measurement was achieved on three positions within the dental arch (incisors, right molars and left molars), three times at each position considering the highest value for each one. Statistical analysis was performed by ANOVA and Mann-Whitney test ( α = 5%). There was a significant deficit in bite force in male individuals with cleft lip and palate compared to the male control group (p=0.02, p=0.004, p=0.003 for incisors, right and left molars, respectively). For the female group, the difference was not statistically significant (p=0.79, p=0.06, p=0.47). In the group of individuals with clefts, 92.6% were under orthodontic treatment, which could be a reason for the present findings, since it can decrease the bite force more remarkably in males than in females. In conclusion, the bite force is significantly reduced in men when comparing the cleft group to the noncleft group. In females, this reduction was not significant in the same way. However, the main reason for this reduction and for the different behavior between genders should be further investigated
