272 research outputs found
Eddy genesis and manipulation in plane laminar shear flow
Eddy formation and presence in a plane laminar shear flow configuration consisting of two infinitely long plates orientated parallel to each other is investigated theoretically. The upper plate, which is planar, drives the flow; the lower one has a sinusoidal profile and is fixed. The governing equations are solved via a full finite element formulation for the general case and semi-analytically at the Stokes flow limit. The effects of varying geometry (involving changes in the mean plate separation or the amplitude and wavelength of the lower plate) and inertia are explored separately. For Stokes flow and varying geometry, excellent agreement between the two methods of solution is found. Of particular interest with regard to the flow structure is the importance of the clearance that exists between the upper plate and the tops of the corrugations forming the lower one. When the clearance is large, an eddy is only present at sufficiently large amplitudes or small wavelengths.
However, as the plate clearance is reduced, a critical value is found which triggers the formation of an eddy in an otherwise fully attached flow for any finite amplitude and arbitrarily large wavelength. This is a precursor to the primary eddy to be expected in the lid-driven cavity flow which is formed in the limit of zero clearance between the plates. The influence of the flow driving mechanism is assessed by comparison with corresponding solutions for the case of gravity-driven fluid films flowing over an undulating substrate. When inertia is present, the flow generally becomes asymmetrical. However, it is found that for large mean plate separations the flow local to the lower plate becomes effectively decoupled from the inertia dominated overlying flow if the wavelength of the lower plate is sufficiently small. In such cases the local flow retains its symmetry. A local Reynolds number based on the wavelength is shown to be useful in characterising these large-gap flows. As the mean plate separation is reduced, the form of the asymmetry caused by inertia changes, and becomes strongly dependent on the plate separation. For lower plate wavelengths which do not exhibit a cinematically induced secondary eddy, an inertially induced secondary eddy can be created if the mean plate separation is sufficiently small and the global Reynolds number sufficiently large
Simple Viscous Flows: from Boundary Layers to the Renormalization Group
The seemingly simple problem of determining the drag on a body moving through
a very viscous fluid has, for over 150 years, been a source of theoretical
confusion, mathematical paradoxes, and experimental artifacts, primarily
arising from the complex boundary layer structure of the flow near the body and
at infinity. We review the extensive experimental and theoretical literature on
this problem, with special emphasis on the logical relationship between
different approaches. The survey begins with the developments of matched
asymptotic expansions, and concludes with a discussion of perturbative
renormalization group techniques, adapted from quantum field theory to
differential equations. The renormalization group calculations lead to a new
prediction for the drag coefficient, one which can both reproduce and surpass
the results of matched asymptotics
Dynamics and Excitation of Radio Galaxy Emission-Line Regions - I. PKS 2356-61
Results are presented from a programme of detailed longslit spectroscopic
observations of the extended emission-line region (EELR) associated with the
powerful radio galaxy PKS 2356-61. The observations have been used to construct
spectroscopic datacubes, which yield detailed information on the spatial
variations of emission-line ratios across the EELR, together with its kinematic
structure. We present an extensive comparison between the data and results
obtained from the MAPPINGS II shock ionization code, and show that the physical
properties of the line-emitting gas, including its ionization, excitation,
dynamics and overall energy budget, are entirely consistent with a scenario
involving auto-ionizing shocks as the dominant ionization mechanism. This has
the advantage of accounting for the observed EELR properties by means of a
single physical process, thereby requiring less free parameters than the
alternative scheme involving photoionization by radiation from the active
nucleus. Finally, possible mechanisms of shock formation are considered in the
context of the dynamics and origin of the gas, specifically scenarios involving
infall or accretion of gas during an interaction between the host radio galaxy
and a companion galaxy.Comment: 35 pages, LaTeX, uses aas2pp4.sty file, includes 9 PostScript
figures. Two additional colour plates are available from the authors upon
request. Accepted for publication in the Astrophysical Journa
Longitudinal flow evolution and turbulence structure of dynamically similar, sustained, saline density and turbidity currents
Experimental results are presented concerning flow evolution and turbulence structure of sustained saline and turbidity flows generated on 0°, 3°, 6°, and 9° sloping ramps that terminate abruptly onto a horizontal floor. Two-component velocity and current density were measured with an ultrasonic Doppler velocity profiler and siphon sampler on the slope, just beyond the slope break and downstream on the horizontal floor. Three main factors influence longitudinal flow evolution and turbulence structure: sediment transport and sedimentation, slope angle, and the presence of a slope break. These controls interact differently depending on flow type. Sediment transport is accompanied by an inertial fluid reaction that enhances Reynolds stresses in turbidity flows. Thus turbidity flows mix more vigorously than equivalent saline density flows. For saline flows, turbulent kinetic energy is dependent on slope, and rapid deceleration occurs on the horizontal floor. For turbidity flows, normalized turbulent kinetic energy increases downstream, and mean streamwise deceleration is reduced compared with saline flows. The slope break causes mean bed-normal velocity of turbidity flows to become negative and have a gentler gradient compared with other locations. A reduction of peak Reynolds normal stress in the bed-normal direction is accompanied by an increase in turbulent accelerations across the rest of the flow thickness. Thus the presence of particles acts to increase Reynolds normal stresses independently of gradients of mean velocity, and sediment transport increases across the break in slope. The experiments illustrate that saline density currents may not be good dynamic analogues for natural turbidity currents
Elastic turbulence in curvilinear flows of polymer solutions
Following our first report (A. Groisman and V. Steinberg, \sl Nature , 53 (2000)) we present an extended account of experimental observations of
elasticity induced turbulence in three different systems: a swirling flow
between two plates, a Couette-Taylor (CT) flow between two cylinders, and a
flow in a curvilinear channel (Dean flow). All three set-ups had high ratio of
width of the region available for flow to radius of curvature of the
streamlines. The experiments were carried out with dilute solutions of high
molecular weight polyacrylamide in concentrated sugar syrups. High polymer
relaxation time and solution viscosity ensured prevalence of non-linear elastic
effects over inertial non-linearity, and development of purely elastic
instabilities at low Reynolds number (Re) in all three flows. Above the elastic
instability threshold, flows in all three systems exhibit features of developed
turbulence. Those include: (i)randomly fluctuating fluid motion excited in a
broad range of spatial and temporal scales; (ii) significant increase in the
rates of momentum and mass transfer (compared to those expected for a steady
flow with a smooth velocity profile). Phenomenology, driving mechanisms, and
parameter dependence of the elastic turbulence are compared with those of the
conventional high Re hydrodynamic turbulence in Newtonian fluids.Comment: 23 pages, 26 figure
Starcounts Redivivus. IV. Density Laws Through Photometric Parallaxes
In an effort to more precisely define the spatial distribution of Galactic
field stars, we present an analysis of the photometric parallaxes of 70,000
stars covering nearly 15 square degrees in seven Kapteyn Selected Areas. We
address the affects of Malmquist Bias, subgiant/giant contamination,
metallicity and binary stars upon the derived density laws. The affect of
binary stars is the most significant. We find that while the disk-like
populations of the Milky Way are easily constrained in a simultaneous analysis
of all seven fields, no good simultaneous solution for the halo is found. We
have applied halo density laws taken from other studies and find that the
Besancon flattened power law halo model (c/a=0.6, r^-2.75) produces the best
fit to our data. With this halo, the thick disk has a scale height of 750 pc
with an 8.5% normalization to the old disk. The old disk scale height is
280-300 pc. Corrected for a binary fraction of 50%, these scale heights are 940
pc and 350-375 pc, respectively. Even with this model, there are systematic
discrepancies between the observed and predicted density distributions. Our
model produces density overpredictions in the inner Galaxy and density
underpredictions in the outer Galaxy. A possible solution is modeling the
stellar halo as a two-component system in which the halo has a flattened inner
distribution and a roughly spherical, but substructured outer distribution.
Further reconciliation could be provided by a flared thick disk, a structure
consistent with a merger origin for that population. (Abridged)Comment: 66 pages, accepted to Astrophysical journal, some figures compresse
Historic Light Curve and Long-term Optical Variation of BL Lacertae 2200+420
In this paper, historical optical(UBVRI) data and newly observed data from
the Yunnan Observatory of China(about100 years) are presented for BL Lacertae.
Maximum variations in UBVRI: 5.12, 5.31, 4.73, 2.59, and 2.54 and color indices
of U-B = -0.11 +/- 0.20, B-V= 1.0 +/- 0.11, V-R= 0.73 +/- 0.19, V-I= 1.42 +/-
0.25, R-I= 0.82 +/- 0.11, and B-I= 2.44 +/- 0.29 have been obtained from the
literature; The Jurkevich method is used to investigate the existence of
periods in the B band light curve, and a long-term period of 14 years is found.
The 0.6 and 0.88 year periods reported by Webb et al.(1988) are confirmed. In
addition, a close relation between B-I and B is found, suggesting that the
spectra flattens when the source brightens.Comment: 21 pages, 6 figures, 2 table, aasms4.sty, to be published in ApJ,
Vol. 507, 199
Elastic turbulence in von Karman swirling flow between two disks
We discuss the role of elastic stress in the statistical properties of
elastic turbulence, realized by the flow of a polymer solution between two
disks. The dynamics of the elastic stress are analogous to those of a small
scale fast dynamo in magnetohydrodynamics, and to those of the turbulent
advection of a passive scalar in the Batchelor regime. Both systems are
theoretically studied in literature, and this analogy is exploited to explain
the statistical properties, the flow structure, and the scaling observed
experimentally. Several features of elastic turbulence are confirmed
experimentally and presented in this paper: (i) saturation of the rms of the
vorticity and of velocity gradients in the bulk, leading to the saturation of
the elastic stress; (ii) large rms of the velocity gradients in the boundary
layer, linearly growth with Wi; (iii) skewed PDFs of the injected power, with
exponential tails, which indicate intermittency; PDF of the acceleration
exhibit well-pronounced exponential tails too; (iv) a new length scale, i.e the
thickness of the boundary layer, as measured from the profile of the rms of the
velocity gradient, is found to be relevant and much smaller than the vessel
size; (v) the scaling of the structure functions of the vorticity, velocity
gradients, and injected power is found to be the same as that of a passive
scalar advected by an elastic turbulent velocity field.Comment: submitted to Physics of Fluids; 31 pages, 29 figures (resolution
reduced to screen quality
Utilization of granular solidification during terrestrial locomotion of hatchling sea turtles
Biological terrestrial locomotion occurs on substrate materials with a range of rheological behaviour, which can affect limb-ground interaction, locomotor mode and performance. Surfaces like sand, a granular medium, can display solid or fluid-like behaviour in response to stress. Based on our previous experiments and models of a robot moving on granular media, we hypothesize that solidification properties of granular media allow organisms to achieve performance on sand comparable to that on hard ground. We test this hypothesis by performing a field study examining locomotor performance (average speed) of an animal that can both swim aquatically and move on land, the hatchling Loggerhead sea turtle (Caretta caretta). Hatchlings were challenged to traverse a trackway with two surface treatments: hard ground (sandpaper) and loosely packed sand. On hard ground, the claw use enables no-slip locomotion. Comparable performance on sand was achieved by creation of a solid region behind the flipper that prevents slipping. Yielding forces measured in laboratory drag experiments were sufficient to support the inertial forces at each step, consistent with our solidification hypothesis
- …
