662 research outputs found

    From early stress to 12-month development in very preterm infants: Preliminary findings on epigenetic mechanisms and brain growth

    Get PDF
    Very preterm (VPT) infants admitted to Neonatal Intensive Care Unit (NICU) are at risk for altered brain growth and less-than-optimal socio-emotional development. Recent research suggests that early NICU-related stress contributes to socio-emotional impairments in VPT infants at 3 months through epigenetic regulation (i.e., DNA methylation) of the serotonin transporter gene (SLC6A4). In the present longitudinal study we assessed: (a) the effects of NICU-related stress and SLC6A4 methylation variations from birth to discharge on brain development at term equivalent age (TEA); (b) the association between brain volume at TEA and socio-emotional development (i.e., Personal-Social scale of Griffith Mental Development Scales, GMDS) at 12 months corrected age (CA). Twenty-four infants had complete data at 12-month-age. SLC6A4 methylation was measured at a specific CpG previously associated with NICU-related stress and socio-emotional stress. Findings confirmed that higher NICU-related stress associated with greater increase of SLC6A4 methylation at NICU discharge. Moreover, higher SLC6A4 discharge methylation was associated with reduced anterior temporal lobe (ATL) volume at TEA, which in turn was significantly associated with less-than-optimal GMDS Personal-Social scale score at 12 months CA. The reduced ATL volume at TEA mediated the pathway linking stress-related increase in SLC6A4 methylation at NICU discharge and socio-emotional development at 12 months CA. These findings suggest that early adversity-related epigenetic changes might contribute to the long-lasting programming of socio-emotional development in VPT infants through epigenetic regulation and structural modifications of the developing brain

    PDGFR\u3b2 and FGFR2 mediate endothelial cell differentiation capability of triple negative breast carcinoma cells

    Get PDF
    Triple negative breast cancer (TNBC) is a very aggressive subgroup of breast carcinoma, still lacking specific markers for an effective targeted therapy and with a poorer prognosis compared to other breast cancer subtypes. In this study we investigated the possibility that TNBC cells contribute to the establishment of tumor vascular network by the process known as vasculogenic mimicry, through endothelial cell differentiation. Vascular-like functional properties of breast cancer cell lines were investigated in vitro by tube formation assay and in vivo by confocal microscopy, immunofluorescence or immunohistochemistry on frozen tumor sections. TNBCs express endothelial markers and acquire the ability to form vascular-like channels in vitro and in vivo, both in xenograft models and in human specimens, generating blood lacunae surrounded by tumor cells. Notably this feature is significantly associated with reduced disease free survival. The impairment of the main pathways involved in vessel formation, by treatment with inhibitors (i.e. Sunitinib and Bevacizumab) or by siRNA-mediating silencing, allowed the identification of PDGFR\u3b2 and FGFR2 as relevant players in this phenomenon. Inhibition of these tyrosine kinase receptors negatively affects vascular lacunae formation and significantly inhibits TNBC growth in vivo. In summary, we demonstrated that TNBCs have the ability to form vascular-like channels in vitro and to generate blood lacunae lined by tumor cells in vivo. Moreover, this feature is associated with poor outcome, probably contributing to the aggressiveness of this breast cancer subgroup. Finally, PDGFR\u3b2 and FGFR2-mediated pathways, identified as relevant in mediating this characteristic, potentially represent valid targets for a specific therapy of this breast cancer subgroup

    CSF β-amyloid predicts prognosis in patients with multiple sclerosis

    Get PDF
    Background: The importance of predicting disease progression in multiple sclerosis (MS) has increasingly been recognised, hence reliable biomarkers are needed. Objectives: To investigate the prognostic role of cerebrospinal fluid (CSF) Amyloid beta1-42 (A) levels by the determination of a cut-off value to classify patients in slow and fast progressors. To evaluate possible association with white (WM) and grey matter (GM) damage at early disease stages. Methods: Sixty patients were recruited and followed-up for three to five years. Patients underwent clinical assessment, CSF analysis to determine Aβ levels, and brain MRI (at baseline and after 1 year). T1-weighted volumes were calculated. T2-weighted scans were used to quantify WM lesion loads. Results: Lower CSF Aβ levels were observed in patients with a worse follow-up EDSS (r=−0.65, p0.05). Conclusions: Low CSF Aβ levels may represent a predictive biomarker of disease progression in MS

    prenatal mr imaging detection of deep medullary vein involvement in fetal brain damage

    Get PDF
    SUMMARY: Looking for anomalies distributed in DMV territory, we reviewed 78 fetal MR imaging examinations performed at our institution reporting unequivocal cerebral clastic lesions. We selected 3 cases, all of which had severe cardiocirculatory failure and parenchymal frontoparietal WM hemorrhagic lesions with characteristic fan-shaped distribution. Brain edema and other signs of venous hypertension were also evident. Our data suggest that in utero transient venous hypertension may be responsible for the onset of atypical frontal-located PVL

    COVID-19-associated PRES-like encephalopathy with perivascular gadolinium enhancement

    Get PDF
    We describe the case of a 63-year-old woman who developed a coronavirus disease 2019-associated acute encephalopathy with perivascular gadolinium enhancement

    Safety and diagnostic efficacy of gadobenate dimeglumine in MRI of the brain and spine of neonates and infants

    Get PDF
    BACKGROUND AND PURPOSE: Contrast-enhanced MR imaging provides essential information for pediatric imaging applications. We evaluated gadobenate dimeglumine for contrast-enhanced MR imaging of infants younger than 2 years of age. MATERIALS AND METHODS: Ninety children younger than 2 years of age (including 55 children younger than 1 year) who underwent enhanced MR imaging of the CNS with gadobenate dimeglumine at 0.1 mmol/kg body weight ± 25% by volume were retrospectively enrolled at 2 imaging centers. Safety data were assessed for adverse events and, when available, vital signs and electrocardiogram and clinical laboratory values obtained from 48 hours before until 48 hours after the MR imaging examination. The efficacy of gadobenate dimeglumine-enhanced MR imaging was evaluated prospectively by 3 blinded, unaffiliated readers in terms of the accuracy of combined pre- and postcontrast images relative to precontrast images alone for differentiation of tumor from non-neoplastic disease and the correct diagnosis of specific disease. Differences were tested using the McNemar test. A possible effect of dose on diagnostic accuracy was assessed using the Fisher exact test. RESULTS: Nine nonserious adverse events were reported for 8 (8.8%) patients. Five adverse events occurred in patients 12 months of age or older. All events occurred at least 24 hours after gadobenate dimeglumine administration, and in each case, the investigating radiologist considered that there was no reasonable possibility of a relationship to gadobenate dimeglumine. No clinically meaningful changes in vital signs, electrocardiogram results, or laboratory parameters were reported. Accurate differentiation of tumor from non-neoplastic disease and exact matching of each specific MR imaging-determined diagnosis with the on-site final diagnosis were achieved in significantly more patients by each reader following evaluation of combined pre- and postcontrast images relative to precontrast images alone (91.0%-94.4% versus 75.3%-87.6%, P< .04, and 66.3%-73.0% versus 52.8%-58.4%, P< .02, respectively). No significant differences (P > .133) in diagnostic accuracy were noted between patients receiving ≤0.08 mmol/kg of gadobenate dimeglumine and patients receiving >0.08 mmol/kg of gadobenate dimeglumine. CONCLUSIONS: Gadobenate dimeglumine is safe and effective for pediatric MR imaging

    Investigation of the electrophysiological correlates of negative BOLD response during intermittent photic stimulation : an EEG-fMRI study

    Get PDF
    Although the occurrence of concomitant positive BOLD responses (PBRs) and negative BOLD responses (NBRs) to visual stimuli is increasingly investigated in neuroscience, it still lacks a definite explanation. Multimodal imaging represents a powerful tool to study the determinants of negative BOLD responses: the integration of functional Magnetic Resonance Imaging (fMRI) and electroencephalographic (EEG) recordings is especially useful, since it can give information on the neurovascular coupling underlying this complex phenomenon. In the present study, the brain response to intermittent photic stimulation (IPS) was investigated in a group of healthy subjects using simultaneous EEG-fMRI, with the main objective to study the electrophysiological mechanisms associated with the intense NBRs elicited by IPS in extra-striate visual cortex. The EEG analysis showed that IPS induced a desynchronization of the basal rhythm, followed by the instauration of a novel rhythm driven by the visual stimulation. The most interesting results emerged from the EEG-informed fMRI analysis, which suggested a relationship between the neuronal rhythms at 10 and 12 Hz and the BOLD dynamics in extra-striate visual cortex. These findings support the hypothesis that NBRs to visual stimuli may be neuronal in origin rather than reflecting pure vascular phenomena

    Neuroradiological findings in three cases of pontocerebellar hypoplasia type 9 due to AMPD2 mutation : typical MRI appearances and pearls for differential diagnosis

    Get PDF
    Pontocerebellar hypoplasia type 9 (PCH9) is a rare autosomal recessive neurodegenerative disorder with prenatal onset caused by mutations in adenosine monophosphate deaminase 2 (AMPD2). PCH9 patients demonstrate severe neurodevelopmental delay with early onset and typical magnetic resonance imaging (MRI) findings consisting in: pontine hypoplasia or atrophy with dragonfly cerebellar atrophy appearance on coronal images, reduction in size of the pons and middle cerebellar peduncles, abnormal midbrain describing a figure of "8" on axial images, diffuse loss of cerebral white matter with striking periventricular leukomalacia (PVL), and absence or extreme thinning of the corpus callosum. A review of the literature on PCH9 shows that the MRI phenotype observed in the series herein presented is similar to the eleven cases of PCH9 previously reported. Finally, the main radiological elements which differentiate this diagnosis from other PCH subtypes are described

    Brain malformations and mutations in α- and β-tubulin genes : a review of the literature and description of two new cases

    Get PDF
    Aim: The aim of this study was to determine the frequency of mutations in tubulin genes (TUBB2B, TUBA1A, and TUBB3) in patients with malformations of cortical development (MCDs) of unknown origin. Method: In total, 79 out of 156 patients (41 males, 38 females; age range 8mo-55y (mean age 13y 3mo, SD 11y 2mo) with a neuroradiological diagnosis of MCDs were enrolled in the study. The 77 excluded patients were excluded for the following reasons: suspected or proven diagnosis of pre- or perinatal ischaemic insult (n=13); syndromic disease (n=10); congenital infection (n=14); pregnancy complicated by twin-to-twin transfusion syndrome (n=2); proven mutations in known genes (n=13); poor magnetic resonance imaging (MRI) quality, or lack of informed consent (n=25). A genetic analysis of the TUBA1A, TUBB2B and TUBB3 genes was carried out by direct sequencing of the coding regions of the relevant genes for each participant. Previously described patients with mutations in the TUBB2B and TUBA1A genes were reviewed; clinical and neuroradiological findings were compared and discussed. Results: Two novel heterozygous mutations were detected: a heterozygous mutation in exon 4 of the TUBA1A gene (c.1160C>T) in a 5-year-old female with microcephaly, severe intellectual disability, and absence of language, and a c.1080 _1084del CCTGAinsACATCTTC in exon 4 of the TUBB2B gene in a 31-year-old female with microcephaly, spastic tetraparesis, severe intellectual disability, and scoliosis. Different types of cortical abnormalities, cerebellar vermis hypoplasia, and optic nerve hypoplasia/atrophy were detected on MRI. Dysmorphisms of the basal ganglia and the hippocampi with abnormalities of the midline commissural structures were present in both cases. Interpretation: The consistent presence of hypoplastic and disorganized white matter tracts suggests that, in addition to defects in neuronal migration, disruption of axon growth and guidance is a peculiar feature of tubulin-related disorders
    corecore