1,331 research outputs found
Sustainable landfill leachate treatment using refuse and pine bark as a carbon source for biodenitrification
Raw and 10-week composted commercial garden refuse (CGR) materials and pine bark (PB) mulch were evaluated for their potential use as alternative and sustainable sources of carbon for landfill leachate bio-denitrification. Dynamic batch tests using synthetic nitrate solutions of 100, 500 and 2000 mg NO3 L−1 were used to investigate the substrate performance at increasing nitrate concentrations under optimal conditions. Further to this, sequential batch tests using genuine nitrified landfill leachate with a concentration of 2000 mg NO3 L−1 were carried out to evaluate substrates behaviour in the presence of a complex mixture of chemicals present in leachate. Results showed that complete denitrification occurred in all conditions, indicating that raw and composted CGR and PB can be used as sustainable and efficient media for landfill leachate bio-denitrification. Of the three substrates, raw garden refuse yields the fastest denitrification rate followed by 10-week composted CGR and PB. However, the efficiency of the raw CGR was lower when using genuine leachate, indicating the inhibitory effect of components of the leachate on the denitrification process. Ten-week composted CGR performed optimally at low nitrate concentrations, while poor nitrate removal ability was found at higher nitrate concentrations (2000 mg L−1). In contrast, the PB performance was 3.5 times faster than that of the composted garden refuse at higher nitrate concentrations. Further to this, multi-criteria analysis of the process variables provided an easily implementable framework for the use of waste materials as an alternative and sustainable source of carbon for denitrification
Self-consistent simulation of quantum shot noise in nanoscale electron devices
An approach for studying shot noise in mesoscopic systems that explicitly includes the Coulomb interaction among electrons, by self-consistently solving the Poisson equation, is presented. As a test, current fluctuations on a standard resonant tunneling diode are simulated in agreement with previous predictions and experimental results. The present approach opens a new path for the simulation of nanoscale electron devices, where pure quantum mechanical and Coulomb blockade phenomena coexist
A multi-wavelength pipeline for pulsar searches
Pulsar studies in the recent years have shown, more than others, to have
benefited from a multi-wavelength approach. The INAF - Astronomical Observatory
in Cagliari (INAF-OAC) is a growing facility with a young group devoted to
pulsar and fast transients studies across the electromagnetic spectrum. Taking
advantage of this expertise we have worked to provide a suite of
multi-wavelength software and databases for the observations of pulsars and
compact Galactic objects at the Sardinia Radio Telescope (SRT). In turn, radio
pulsar observations at SRT will be made available, in a processed format, to
gamma-ray searches using AGILE and Fermi gamma-ray satellite and, in a near
future, they will be complementary to polarimetric X-ray observations with
IXPE.Comment: Accepted for publications in Rendiconti Lincei as Proceedings of "A
Decade of AGILE: Results, Challenges and Prospects of Gamma-Ray Astrophysics
Aide à l'apprentissage un modèle systémique d'intervention /
Également disponible en version papierTitre de l'écran-titre (visionné le 3 fév. 2010)Bibliogr. à la fin des v.Vol. 2. Rapport fina
Observatórios de Acidentes e Violência: a capacitação dos profissionais da saúde para a implantação de sistema de vigilância.
Investigating the high-frequency spectral features of SNRs Tycho, W44 and IC443 with the Sardinia Radio Telescope
The main characteristics in the radio continuum spectra of Supernova Remnants
(SNRs) result from simple synchrotron emission. In addition, electron
acceleration mechanisms can shape the spectra in specific ways, especially at
high radio frequencies. These features are connected to the age and the
peculiar conditions of the local interstellar medium interacting with the SNR.
Whereas the bulk radio emission is expected at up to GHz, sensitive
high-resolution images of SNRs above 10 GHz are lacking and are not easily
achievable, especially in the confused regions of the Galactic Plane. In the
framework of the early science observations with the Sardinia Radio Telescope
in February-March 2016, we obtained high-resolution images of SNRs Tycho, W44
and IC443 that provided accurate integrated flux density measurements at 21.4
GHz: 8.8 0.9 Jy for Tycho, 25 3 Jy for W44 and 66 7 Jy for
IC443. We coupled the SRT measurements with radio data available in the
literature in order to characterise the integrated and spatially-resolved
spectra of these SNRs, and to find significant frequency- and region-dependent
spectral slope variations. For the first time, we provide direct evidence of a
spectral break in the radio spectral energy distribution of W44 at an
exponential cutoff frequency of 15 2 GHz. This result constrains the
maximum energy of the accelerated electrons in the range GeV, in
agreement with predictions indirectly derived from AGILE and \textit{Fermi}-LAT
gamma-ray observations. With regard to IC443, our results confirm the
noticeable presence of a bump in the integrated spectrum around GHz
that could result from a spinning dust emission mechanism.Comment: 12 pages, 9 figure
- …
