594 research outputs found
MicroTCA implementation of synchronous Ethernet-Based DAQ systems for large scale experiments
Large LAr TPCs are among the most powerful detectors to address open problems
in particle and astro-particle physics, such as CP violation in leptonic
sector, neutrino properties and their astrophysical implications, proton decay
search etc. The scale of such detector implies severe constraints on their
readout and DAQ system. In this article we describe a data acquisition scheme
for this new generation of large detectors. The main challenge is to propose a
scalable and easy to use solution able to manage a large number of channels at
the lowest cost. It is interesting to note that these constraints are very
similar to those existing in Network Telecommunication Industry. We propose to
study how emerging technologies like ATCA and TCA could be used in
neutrino experiments. We describe the design of an Advanced Mezzanine Board
(AMC) including 32 ADC channels. This board receives 32 analogical channels at
the front panel and sends the formatted data through the TCA backplane
using a Gigabit Ethernet link. The gigabit switch of the MCH is used to
centralize and to send the data to the event building computer. The core of
this card is a FPGA (ARIA-GX from ALTERA) including the whole system except the
memories. A hardware accelerator has been implemented using a NIOS II P
and a Gigabit MAC IP. Obviously, in order to be able to reconstruct the tracks
from the events a time synchronisation system is mandatory. We decided to
implement the IEEE1588 standard also called Precision Timing Protocol, another
emerging and promising technology in Telecommunication Industry. In this
article we describe a Gigabit PTP implementation using the recovered clock of
the gigabit link. By doing so the drift is directly cancelled and the PTP will
be used only to evaluate and to correct the offset.Comment: Talk presented at the 2009 Real Time Conference, Beijing, May '09,
submitted to the proceeding
High rate, fast timing Glass RPC for the high CMS muon detectors
The HL-LHC phase is designed to increase by an order of magnitude the amount
of data to be collected by the LHC experiments. To achieve this goal in a
reasonable time scale the instantaneous luminosity would also increase by an
order of magnitude up to cms. The region of the
forward muon spectrometer () is not equipped with RPC stations.
The increase of the expected particles rate up to 2 kHz/cm ( including a
safety factor 3 ) motivates the installation of RPC chambers to guarantee
redundancy with the CSC chambers already present. The actual RPC technology of
CMS cannot sustain the expected background level. A new generation Glass-RPC
(GRPC) using low resistivity glass (LR) is proposed to equip at least the two
most far away of the four high eta muon stations of CMS. The design of small
size prototypes and the studies of their performances under high rate particles
flux is presented.Comment: 5 pages, 5 figures, proceeding for the conference VCI 201
Performance of Glass Resistive Plate Chambers for a high granularity semi-digital calorimeter
A new design of highly granular hadronic calorimeter using Glass Resistive
Plate Chambers (GRPCs) with embedded electronics has been proposed for the
future International Linear Collider (ILC) experiments. It features a 2-bit
threshold semi-digital read-out. Several GRPC prototypes with their electronics
have been successfully built and tested in pion beams. The design of these
detectors is presented along with the test results on efficiency, pad
multiplicity, stability and reproducibility.Comment: 16 pages, 15 figure
High rate, fast timing Glass RPC for the high {\eta} CMS muon detectors
The HL-LHC phase is designed to increase by an order of magnitude the amount
of data to be collected by the LHC experiments. To achieve this goal in a
reasonable time scale the instantaneous luminosity would also increase by an
order of magnitude up to . The region of the forward
muon spectrometer () is not equipped with RPC stations. The
increase of the expected particles rate up to (including a
safety factor 3) motivates the installation of RPC chambers to guarantee
redundancy with the CSC chambers already present. The actual RPC technology of
CMS cannot sustain the expected background level. The new technology that will
be chosen should have a high rate capability and provides a good spatial and
timing resolution. A new generation of Glass-RPC (GRPC) using low-resistivity
(LR) glass is proposed to equip at least the two most far away of the four high
muon stations of CMS. First the design of small size prototypes and
studies of their performance in high-rate particles flux is presented. Then the
proposed designs for large size chambers and their fast-timing electronic
readout are examined and preliminary results are provided.Comment: 14 pages, 11 figures, Conference proceeding for the 2016 Resistive
Plate Chambers and Related Detector
Construction and commissioning of a technological prototype of a high-granularity semi-digital hadronic calorimeter
A large prototype of 1.3m3 was designed and built as a demonstrator of the
semi-digital hadronic calorimeter (SDHCAL) concept proposed for the future ILC
experiments. The prototype is a sampling hadronic calorimeter of 48 units. Each
unit is built of an active layer made of 1m2 Glass Resistive Plate
Chamber(GRPC) detector placed inside a cassette whose walls are made of
stainless steel. The cassette contains also the electronics used to read out
the GRPC detector. The lateral granularity of the active layer is provided by
the electronics pick-up pads of 1cm2 each. The cassettes are inserted into a
self-supporting mechanical structure built also of stainless steel plates
which, with the cassettes walls, play the role of the absorber. The prototype
was designed to be very compact and important efforts were made to minimize the
number of services cables to optimize the efficiency of the Particle Flow
Algorithm techniques to be used in the future ILC experiments. The different
components of the SDHCAL prototype were studied individually and strict
criteria were applied for the final selection of these components. Basic
calibration procedures were performed after the prototype assembling. The
prototype is the first of a series of new-generation detectors equipped with a
power-pulsing mode intended to reduce the power consumption of this highly
granular detector. A dedicated acquisition system was developed to deal with
the output of more than 440000 electronics channels in both trigger and
triggerless modes. After its completion in 2011, the prototype was commissioned
using cosmic rays and particles beams at CERN.Comment: 49 pages, 41 figure
The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers
The intrinsic time structure of hadronic showers influences the timing
capability and the required integration time of hadronic calorimeters in
particle physics experiments, and depends on the active medium and on the
absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15
small plastic scintillator tiles read out with Silicon Photomultipliers, the
time structure of showers is measured on a statistical basis with high spatial
and temporal resolution in sampling calorimeters with tungsten and steel
absorbers. The results are compared to GEANT4 (version 9.4 patch 03)
simulations with different hadronic physics models. These comparisons
demonstrate the importance of using high precision treatment of low-energy
neutrons for tungsten absorbers, while an overall good agreement between data
and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS
Co-simulation domain decomposition algorithm for hybrid EMT-Dynamic Phasor modeling
An iterative coupling algorithm based on restricted additive Schwarz domain
decomposition is investigated to co-simulate electrical circuits with hybrid
electromagnetic (EMT) and transient stability (TS) modeled using dynamic
phasors. This co-simulation algorithm does not introduce any delay between the
data exchanged at the co-simulation step. The pure linear convergence property
of the iterative method allows it to be accelerated towards the true solution
by a non-intrusive Aitken's acceleration of the convergence post-processing,
even if the domain decomposition interface conditions make the iterative method
divergent. This provides a method less sensitive to the splitting. Numerical
tests on a linear RLC circuit combining EMT and TS modeling are provided.Comment: 30 pages, 18 figures, 2 table
Effects of adaptive harvesting on fishing down processes and resilience changes in predator-prey and tritrophic systems
Many world fisheries display a declining mean trophic level of catches. This “fishing down the food web” is often attributed to reduced densities of high-trophic-level species. We show here that the fishing down pattern can actually emerge from the adaptive harvesting of two- and three-species food webs, where changes in fishing patterns are driven by the relative profitabilities of the harvested species. Shifting fishing patterns from a focus on higher trophic levels to a focus on lower trophic levels can yield abrupt changes in the system, strongly impacting species densities. In predator-prey systems, such regime shifts occur when the predator species is highly valuable relative to the prey, and when the top-down control on the prey is strong. Moreover, we find that when the two species are jointly harvested, high adaptation speeds can reduce the resilience of fisheries. Our results therefore suggest that flexibility in harvesting strategies will not necessarily benefit fisheries but may actually harm their sustainability
- …
