2,514 research outputs found
Timescales of carbon turnover in soils with mixed crystalline mineralogies
Organic matter–mineral associations stabilize much of the carbon
(C) stored globally in soils. Metastable short-range-order (SRO) minerals
such as allophane and ferrihydrite provide one mechanism for long-term
stabilization of organic matter in young soil. However, in soils with few SRO
minerals and a predominance of crystalline aluminosilicate or Fe (and
Al) oxyhydroxide, C turnover should
be governed by chemisorption with those minerals. Here, we correlate mineral
composition from soils containing small amounts of SRO minerals with mean
turnover time (TT) of C estimated from radiocarbon (<sup>14</sup>C) in bulk soil,
free light fraction and mineral-associated organic matter. We varied the
mineral amount and composition by sampling ancient soils formed on different
lithologies in arid to subhumid climates in Kruger National Park (KNP), South
Africa. Mineral contents in bulk soils were assessed using chemical
extractions to quantify Fe oxyhydroxides and SRO minerals. Because of our
interest in the role of silicate clay mineralogy, particularly smectite
(2 : 1) and kaolinite (1 : 1), we separately quantified the mineralogy of
the clay-sized fraction using X-ray diffraction (XRD) and measured <sup>14</sup>C
on the same fraction.
<br><br>
Density separation demonstrated that mineral associated C accounted for
40–70 % of bulk soil organic C in A and B1 horizons for granite,
nephelinite and arid-zone gabbro soils, and > 80 % in other
soils. Organic matter strongly associated with the isolated clay-sized
fraction represented only 9–47 % of the bulk soil C. The mean TT of C
strongly associated with the clay-sized fraction increased with the amount of
smectite (2 : 1 clays); in samples with > 40 % smectite it
averaged 1020 ± 460 years. The C not strongly associated with
clay-sized minerals, including a combination of low-density C, the C
associated with minerals of sizes between 2 µm and 2 cm (including
Fe oxyhydroxides as coatings), and C removed from clay-sized material by
2 % hydrogen peroxide had TTs averaging 190 ± 190 years in surface
horizons. Summed over the bulk soil profile, we found that smectite content
correlated with the mean TT of bulk soil C across varied lithologies. The SRO
mineral content in KNP soils was generally very low, except for the soils
developed on gabbros under more humid climate that also had very high Fe and
C contents with a surprisingly short, mean C TTs. In younger landscapes, SRO
minerals are metastable and sequester C for long timescales. We hypothesize
that in the KNP, SRO minerals represent a transient stage of mineral
evolution and therefore lock up C for a shorter time.
<br><br>
Overall, we found crystalline Fe-oxyhydroxides (determined as the difference
between Fe in dithionate citrate and oxalate extractions) to be the strongest
predictor for soil C content, while the mean TT of soil C was best predicted
from the amount of smectite, which was also related to more easily measured
bulk properties such as cation exchange capacity or pH. Combined with
previous research on C turnover times in 2 : 1 vs. 1 : 1 clays, our
results hold promise for predicting C inventory and persistence based on
intrinsic timescales of specific carbon–mineral
interactions
Human impacts on soil carbon dynamics of deep-rooted Amazonian forests and effect of land use change on the carbon cycle in Amazon soils
The main objective of these NASA-funded projects is to improve our understanding of land-use impacts on soil carbon dynamics in the Amazon Basin. Soil contains approximately one half of tropical forest carbon stocks, yet the fate of this carbon following forest impoverishment is poorly studied. Our mechanistics approach draws on numerous techniques for measuring soil carbon outputs, inputs, and turnover time in the soils of adjacent forest and pasture ecosystems at our research site in Paragominas, state of Para, Brazil. We are scaling up from this site-specific work by analyzing Basin-wide patterns in rooting depth and rainfall seasonality, the two factors that we believe should explain much of the variation in tropical soil carbons dynamics. In this report, we summarize ongoing measurements at our Paragominas study site, progress in employing new field data to understand soil C dynamics, and some surprising results from our regional, scale-up work
Living on borrowed time – Amazonian trees use decade‐old storage carbon to survive for months after complete stem girdling
Nonstructural carbon (NSC) reserves act as buffers to sustain tree activity during periods when carbon (C) assimilation does not meet C demand, but little is known about their age and accessibility; we designed a controlled girdling experiment in the Amazon to study tree survival on NSC reserves. We used bomb-radiocarbon (14C) to monitor the time elapsed between C fixation and release (‘age’ of substrates). We simultaneously monitored how the mobilization of reserve C affected δ13CO2. Six ungirdled control trees relied almost exclusively on recent assimilates throughout the 17 months of measurement. The Δ14C of CO2 emitted from the six girdled stems increased significantly over time after girdling, indicating substantial remobilization of storage NSC fixed up to 13–14 yr previously. This remobilization was not accompanied by a consistent change in observed δ13CO2. These trees have access to storage pools integrating C accumulated over more than a decade. Remobilization follows a very clear reverse chronological mobilization with younger reserve pools being mobilized first. The lack of a shift in the δ13CO2 might indicate a constant contribution of starch hydrolysis to the soluble sugar pool even outside pronounced stress periods (regular mixing). © 2018 The Authors. New Phytologist © 2018 New Phytologist Trus
Anomalous AMS radiocarbon ages for foraminifera from high-deposition-rate ocean sediments
Radiocarbon ages on handpicked foraminifera from deep-sea cores are revealing that areas of rapid sediment accumulation are in some cases subject to hiatuses, reworking and perhaps secondary calcite deposition. We present here an extreme example of the impacts of such disturbances. The message is that if precise chronologies or meaningful benthic planktic age differences are to be obtained, then it is essential to document the reliability of radiocarbon ages by making both comparisons between coexisting species of planktomc foraminifera and detailed down-core sequences of measurements
Geologic context of geodetic data across a Basin and Range normal fault, Crescent Valley, Nevada
Geodetic strain and late Quaternary faulting in the Basin and Range province is distributed over a region much wider than historic seismicity, which is localized near the margins of the province. In the relatively aseismic interior, both the magnitude and direction of geodetic strain may be inconsistent with the Holocene faulting record. We document the best example of such a disagreement across the NE striking, ~55° NW dipping Crescent normal fault, where a NW oriented, 70 km geodetic baseline records contemporary shortening of ~2 mm/yr orthogonal to the fault trace. In contrast, our geomorphic, paleoseismic, and geochronologic analyses of the Crescent fault suggest that a large extensional rupture occurred during the late Holocene epoch. An excavation across the fault at Fourmile Canyon reveals that the most recent event occurred at 2.8 ± 0.1 ka, with net vertical tectonic displacement of 4.6 ± 0.4 m at this location, corresponding to the release of ~3 m of accumulated NW-SE extension. Measured alluvial scarp profiles suggest a minimum rupture length of 30 km along the range front for the event, implying a moment magnitude M_w of at least 6.6. No prior event occurred between ~2.8 ka and ~6.4 ± 0.1 ka, the ^(14)C calender age of strata near the base of the exposed section. Assuming typical slip rates for Basin and Range faults (~0.3 mm/yr), these results imply that up to one third, or ~1 m, of the extensional strain released in the previous earthquake could have reaccumulated across the fault since ~2.8 ka. However, the contemporary shortening implies that the fault is unloading due to a transient process, whose duration is limited to between 6 years (geodetic recording time) and 2.8 ka (the age of the most recent event). These results emphasize the importance of providing accurate geologic data on the timescale of the earthquake cycle in order to evaluate geodetic measurements
Bayesian calibration of a soil organic carbon model using Δ<sup>14</sup>C measurements of soil organic carbon and heterotrophic respiration as joint constraints
Soils of temperate forests store significant amounts of organic matter and
are considered to be net sinks of atmospheric CO<sub>2</sub>. Soil organic carbon
(SOC) turnover has been studied using the Δ<sup>14</sup>C values of bulk SOC
or different SOC fractions as observational constraints in SOC models.
Further, the Δ<sup>14</sup>C values of CO<sub>2</sub> that evolved during the
incubation of soil and roots have been widely used together with
Δ<sup>14</sup>C of total soil respiration to partition soil respiration into
heterotrophic respiration (HR) and rhizosphere respiration. However, these
data have not been used as joint observational constraints to determine SOC
turnover times. Thus, we focus on (1) how different combinations of
observational constraints help to narrow estimates of turnover times and
other parameters of a simple two-pool model, the Introductory Carbon Balance
Model (ICBM); (2) whether relaxing the steady-state assumption in a multiple
constraints approach allows the source/sink strength of the soil to be
determined while estimating turnover times at the same time. To this end ICBM
was adapted to model SOC and SO<sup>14</sup>C in parallel with
litterfall and the Δ<sup>14</sup>C of litterfall as driving variables. The
Δ<sup>14</sup>C of the atmosphere with its prominent bomb peak was used as a
proxy for the Δ<sup>14</sup>C of litterfall. Data from three spruce-dominated
temperate forests in Germany and the USA (Coulissenhieb II, Solling D0 and
Howland Tower site) were used to estimate the parameters of ICBM via Bayesian
calibration. Key findings are as follows: (1) the joint use of all four
observational constraints (SOC stock and its Δ<sup>14</sup>C, HR flux and its
Δ<sup>14</sup>C) helped to considerably narrow turnover times of the young
pool (primarily by Δ<sup>14</sup>C of HR) and the old pool (primarily by
Δ<sup>14</sup>C of SOC). Furthermore, the joint use of all observational
constraints made it possible to constrain the humification factor in ICBM,
which describes the fraction of the annual outflux from the young pool that
enters the old pool. The Bayesian parameter estimation yielded the following
turnover times (mean ± standard deviation) for SOC in the young pool:
Coulissenhieb II 1.1 ± 0.5 years, Solling D0 5.7 ± 0.8 years and
Howland Tower 0.8 ± 0.4 years. Turnover times for the old pool were
377 ± 61 years (Coulissenhieb II), 313 ± 66 years (Solling D0)
and 184 ± 42 years (Howland Tower), respectively. (2) At all three
sites the multiple constraints approach was not able to determine if the soil
has been losing or storing carbon. Nevertheless, the relaxed steady-state
assumption hardly introduced any additional uncertainty for the other
parameter estimates. Overall the results suggest that using Δ<sup>14</sup>C
data from more than one carbon pool or flux helps to better constrain SOC
models
Evaluation of the ECOSSE model to predict heterotrophic soil respiration by direct measurements
Acknowledgements This work contributes to the ELUM (Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial) project, which was commissioned and funded by the Energy Technologies Institute (ETI), and to Carbo-BioCrop (http://www.carbobiocrop.ac.uk; a NERC funded project; NE/H010742/1), UKERC Phase II and III (NERC; NE/H013237/1), MAGLUE (http://www.maglue.ac.uk; an EPSRC funded project; EP/M013200/1) and as part of the Seventh Framework For Research Programme of the EU, within the EUROCHAR project (N 265179) and EXPEER within WU FP7-Infrastructures. We acknowledge the use of the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). We thank two anonymous reviewers and Dr William van Dijk for their valuable suggestions.Peer reviewedPostprin
- …
