926 research outputs found

    Imaging interstitial iron concentrations in boron-doped crystalline silicon using photoluminescence

    Get PDF
    Imaging the band-to-band photoluminescence of silicon wafers is known to provide rapid and high-resolution images of the carrier lifetime. Here, we show that such photoluminescence images, taken before and after dissociation of iron-boron pairs, allow an accurate image of the interstitial iron concentration across a boron-doped p-type silicon wafer to be generated. Such iron images can be obtained more rapidly than with existing point-by-point iron mapping techniques. However, because the technique is best used at moderate illumination intensities, it is important to adopt a generalized analysis that takes account of different injection levels across a wafer. The technique has been verified via measurement of a deliberately contaminated single-crystal silicon wafer with a range of known iron concentrations. It has also been applied to directionally solidified ingot-grown multicrystalline silicon wafers made for solar cell production, which contain a detectible amount of unwanted iron. The iron images on these wafers reveal internal gettering of iron to grain boundaries and dislocated regions during ingot growth.D.M. is supported by an Australian Research Council QEII Fellowship. The Centre of Excellence for Advanced Silicon Photovoltaics and Photonics at UNSW is funded by the Australian Research Council

    High-Fidelity Spin Measurement on the Nitrogen-Vacancy Center

    Full text link
    Nitrogen-vacancy (NV) centers in diamond are versatile candidates for many quantum information processing tasks, ranging from quantum imaging and sensing through to quantum communication and fault-tolerant quantum computers. Critical to almost every potential application is an efficient mechanism for the high fidelity readout of the state of the electronic and nuclear spins. Typically such readout has been achieved through an optically resonant fluorescence measurement, but the presence of decay through a meta-stable state will limit its efficiency to the order of 99%. While this is good enough for many applications, it is insufficient for large scale quantum networks and fault-tolerant computational tasks. Here we explore an alternative approach based on dipole induced transparency (state-dependent reflection) in an NV center cavity QED system, using the most recent knowledge of the NV center's parameters to determine its feasibility, including the decay channels through the meta-stable subspace and photon ionization. We find that single-shot measurements above fault-tolerant thresholds should be available in the strong coupling regime for a wide range of cavity-center cooperativities, using a majority voting approach utilizing single photon detection. Furthermore, extremely high fidelity measurements are possible using weak optical pulses.Comment: 13 pages, 8 figure

    Progress in atom chips and the integration of optical microcavities

    Full text link
    We review recent progress at the Centre for Cold Matter in developing atom chips. An important advantage of miniaturizing atom traps on a chip is the possibility of obtaining very tight trapping structures with the capability of manipulating atoms on the micron length scale. We recall some of the pros and cons of bringing atoms close to the chip surface, as is required in order to make small static structures, and we discuss the relative merits of metallic, dielectric and superconducting chip surfaces. We point out that the addition of integrated optical devices on the chip can enhance its capability through single atom detection and controlled photon production. Finally, we review the status of integrated microcavities that have recently been demonstrated at our Centre and discuss their prospects for future development.Comment: 12 pages, 6 figures, proceedings of the ICOLS07 conferenc

    Robust Entanglement through Macroscopic Quantum Jumps

    Full text link
    We propose an entanglement generation scheme that requires neither the coherent evolution of a quantum system nor the detection of single photons. Instead, the desired state is heralded by a {\em macroscopic} quantum jump. Macroscopic quantum jumps manifest themselves as a random telegraph signal with long intervals of intense fluorescence (light periods) interrupted by the complete absence of photons (dark periods). Here we show that a system of two atoms trapped inside an optical cavity can be designed such that a dark period prepares the atoms in a maximally entangled ground state. Achieving fidelities above 0.9 is possible even when the single-atom cooperativity parameter C is as low as 10 and when using a photon detector with an efficiency as low as eta = 0.2.Comment: 5 pages, 4 figures, more detailed discussion of underlying physical effect, references update

    Engineering near infrared single photon emitters in ultrapure silicon carbide

    Full text link
    Quantum emitters hosted in crystalline lattices are highly attractive candidates for quantum information processing, secure networks and nanosensing. For many of these applications it is necessary to have control over single emitters with long spin coherence times. Such single quantum systems have been realized using quantum dots, colour centres in diamond, dopants in nanostructures and molecules . More recently, ensemble emitters with spin dephasing times on the order of microseconds and room-temperature optically detectable magnetic resonance have been identified in silicon carbide (SiC), a compound being highly compatible to up-to-date semiconductor device technology. So far however, the engineering of such spin centres in SiC on single-emitter level has remained elusive. Here, we demonstrate the control of spin centre density in ultrapure SiC over 8 orders of magnitude, from below 10910^{9} to above 101610^{16} \,cm3^{-3} using neutron irradiation. For a low irradiation dose, a fully photostable, room-temperature, near infrared (NIR) single photon emitter can clearly be isolated, demonstrating no bleaching even after 101410^{14} excitation cycles. Based on their spectroscopic fingerprints, these centres are identified as silicon vacancies, which can potentially be used as qubits, spin sensors and maser amplifiers.Comment: 5 pages, 4 figure

    Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas

    Full text link
    We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating.Comment: 8 pages, 5 figure

    Smooth optimal quantum control for robust solid state spin magnetometry

    Full text link
    Nitrogen-vacancy centers in diamond show great potential as magnetic, electric and thermal sensors which are naturally packaged in a bio-compatible material. In particular, NV-based magnetometers combine small sensor volumes with high sensitivities under ambient conditions. The practical operation of such sensors, however, requires advanced quantum control techniques that are robust with respect to experimental and material imperfections, control errors, and noise. Here, we present a novel approach that uses Floquet theory to efficiently generate smooth and simple quantum control pulses with tailored robustness properties. We verify their performance by applying them to a single NV center and by characterising the resulting quantum gate using quantum process tomography. We show how the sensitivity of NV-ensemble magnetometry schemes can be improved by up to two orders of magnitude by compensating for inhomogeneities in both the control field and the spin transition frequency. Our approach is ideally suited for a wide variety of quantum technologies requiring high-fidelity, robust control under tight bandwidth requirements, such as spin-ensemble based memories involving high-Q cavities.Comment: 12 pages, 5 figure
    corecore