558 research outputs found

    Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs.

    Get PDF
    Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues ('myobundles') using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7(+) cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders

    Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications

    Get PDF
    Resorting to a multiphase modelling framework, tumours are described here as a mixture of tumour and host cells within a porous structure constituted by a remodelling extracellular matrix (ECM), which is wet by a physiological extracellular fluid. The model presented in this article focuses mainly on the description of mechanical interactions of the growing tumour with the host tissue, their influence on tumour growth, and the attachment/detachment mechanisms between cells and ECM. Starting from some recent experimental evidences, we propose to describe the interaction forces involving the extracellular matrix via some concepts coming from viscoplasticity. We then apply the model to the description of the growth of tumour cords and the formation of fibrosis

    Evaluating transport in irregular pore networks

    Get PDF
    A general approach for investigating transport phenomena in porous media is presented. This approach has the capacity to represent various kinds of irregularity in porous media without the need for excessive detail or computational effort. The overall method combines a generalized effective medium approximation (EMA) with a macroscopic continuum model in order to derive a transport equation with explicit analytical expressions for the transport coefficients. The proposed form of the EMA is an anisotropic and heterogeneous extension of Kirkpatrick's EMA which allows the overall model to account for microscopic alterations in connectivity (with the locations of the pores and the orientation and length of the throat) as well as macroscopic variations in transport properties. A comparison to numerical results for randomly generated networks with different properties is given, indicating the potential for this methodology to handle cases that would pose significant difficulties to many other analytical models

    Parallel-plate Flow Chamber and Continuous Flow Circuit to Evaluate Endothelial Progenitor Cells under Laminar Flow Shear Stress

    Get PDF
    The overall goal of this method is to describe a technique to subject adherent cells to laminar flow conditions and evaluate their response to well quantifiable fluid shear stresses1. Our flow chamber design and flow circuit (Fig. 1) contains a transparent viewing region that enables testing of cell adhesion and imaging of cell morphology immediately before flow (Fig. 11A, B), at various time points during flow (Fig. 11C), and after flow (Fig. 11D). These experiments are illustrated with human umbilical cord blood-derived endothelial progenitor cells (EPCs) and porcine EPCs2,3. This method is also applicable to other adherent cell types, e.g. smooth muscle cells (SMCs) or fibroblasts. The chamber and all parts of the circuit are easily sterilized with steam autoclaving In contrast to other chambers, e.g. microfluidic chambers, large numbers of cells (> 1 million depending on cell size) can be recovered after the flow experiment under sterile conditions for cell culture or other experiments, e.g. DNA or RNA extraction, or immunohistochemistry (Fig. 11E), or scanning electron microscopy5. The shear stress can be adjusted by varying the flow rate of the perfusate, the fluid viscosity, or the channel height and width. The latter can reduce fluid volume or cell needs while ensuring that one-dimensional flow is maintained. It is not necessary to measure chamber height between experiments, since the chamber height does not depend on the use of gaskets, which greatly increases the ease of multiple experiments. Furthermore, the circuit design easily enables the collection of perfusate samples for analysis and/or quantification of metabolites secreted by cells under fluid shear stress exposure, e.g. nitric oxide (Fig. 12)6

    Initial/boundary-value problems of tumor growth within a host tissue

    Full text link
    This paper concerns multiphase models of tumor growth in interaction with a surrounding tissue, taking into account also the interplay with diffusible nutrients feeding the cells. Models specialize in nonlinear systems of possibly degenerate parabolic equations, which include phenomenological terms related to specific cell functions. The paper discusses general modeling guidelines for such terms, as well as for initial and boundary conditions, aiming at both biological consistency and mathematical robustness of the resulting problems. Particularly, it addresses some qualitative properties such as a priori nonnegativity, boundedness, and uniqueness of the solutions. Existence of the solutions is studied in the one-dimensional time-independent case.Comment: 30 pages, 5 figure

    A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone

    Full text link
    Recommended standardized procedures for determining exhaled lower respiratory nitric oxide and nasal nitric oxide have been developed by task forces of the European Respiratory Society and the American Thoracic Society. These recommendations have paved the way for the measurement of nitric oxide to become a diagnostic tool for specific clinical applications. It would be desirable to develop similar guidelines for the sampling of other trace gases in exhaled breath, especially volatile organic compounds (VOCs) which reflect ongoing metabolism. The concentrations of water-soluble, blood-borne substances in exhaled breath are influenced by: (i) breathing patterns affecting gas exchange in the conducting airways; (ii) the concentrations in the tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations of the compound. The classical Farhi equation takes only the alveolar concentrations into account. Real-time measurements of acetone in end-tidal breath under an ergometer challenge show characteristics which cannot be explained within the Farhi setting. Here we develop a compartment model that reliably captures these profiles and is capable of relating breath to the systemic concentrations of acetone. By comparison with experimental data it is inferred that the major part of variability in breath acetone concentrations (e.g., in response to moderate exercise or altered breathing patterns) can be attributed to airway gas exchange, with minimal changes of the underlying blood and tissue concentrations. Moreover, it is deduced that measured end-tidal breath concentrations of acetone determined during resting conditions and free breathing will be rather poor indicators for endogenous levels. Particularly, the current formulation includes the classical Farhi and the Scheid series inhomogeneity model as special limiting cases.Comment: 38 page

    Human Microphysiological Systems and Organoids as in Vitro Models for Toxicological Studies

    Get PDF
    Organoids and microphysiological systems represent two current approaches to reproduce organ function in vitro. These systems can potentially provide unbiased assays of function which are needed to understand the mechanism of action of environmental toxins. Culture models that replicate organ function and interactions among cell types and tissues move beyond existing screens that target individual pathways and provide a means to assay context-dependent function. The current state of organoid cultures and microphysiological systems is reviewed and applications discussed. While few studies have examined environmental pollutants, studies with drugs demonstrate the power of these systems to assess toxicity as well as mechanism of action. Strengths and limitations of organoids and microphysiological systems are reviewed and challenges are identified to produce suitable high capacity functional assays

    Influence of flow rate and scaffold pore size on cell behavior during mechanical stimulation in a flow perfusion bioreactor.

    Get PDF
    Mechanically stimulating cell-seeded scaffolds by flow-perfusion is one approach utilized for developing clinically applicable bone graft substitutes. A key challenge is determining the magnitude of stimuli to apply that enhances cell differentiation but minimizes cell detachment from the scaffold. In this study, we employed a combined computational modeling and experimental approach to examine how the scaffold mean pore size influences cell attachment morphology and subsequently impacts upon cell deformation and detachment when subjected to fluid-flow. Cell detachment from osteoblast-seeded collagen-GAG scaffolds was evaluated experimentally across a range of scaffold pore sizes subjected to different flow rates and exposure times in a perfusion bioreactor. Cell detachment was found to be proportional to flow rate and inversely proportional to pore size. Using this data, a theoretical model was derived that accurately predicted cell detachment as a function of mean shear stress, mean pore size, and time. Computational modeling of cell deformation in response to fluid flow showed the percentage of cells exceeding a critical threshold of deformation correlated with cell detachment experimentally and the majority of these cells were of a bridging morphology (cells stretched across pores). These findings will help researchers optimize the mean pore size of scaffolds and perfusion bioreactor operating conditions to manage cell detachment when mechanically simulating cells via flow perfusion. Biotechnol. Bioeng. © 2012 Wiley Periodicals, Inc
    corecore