727 research outputs found
A Meta-Analysis of Genome-Wide Association Scans Identifies IL18RAP, PTPN2, TAGAP, and PUS10 As Shared Risk Loci for Crohn's Disease and Celiac Disease
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Complex nature of SNP genotype effects on gene expression in primary human leucocytes.
This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.BACKGROUND: Genome wide association studies have been hugely successful in identifying disease risk variants, yet most variants do not lead to coding changes and how variants influence biological function is usually unknown. METHODS: We correlated gene expression and genetic variation in untouched primary leucocytes (n = 110) from individuals with celiac disease - a common condition with multiple risk variants identified. We compared our observations with an EBV-transformed HapMap B cell line dataset (n = 90), and performed a meta-analysis to increase power to detect non-tissue specific effects. RESULTS: In celiac peripheral blood, 2,315 SNP variants influenced gene expression at 765 different transcripts (< 250 kb from SNP, at FDR = 0.05, cis expression quantitative trait loci, eQTLs). 135 of the detected SNP-probe effects (reflecting 51 unique probes) were also detected in a HapMap B cell line published dataset, all with effects in the same allelic direction. Overall gene expression differences within the two datasets predominantly explain the limited overlap in observed cis-eQTLs. Celiac associated risk variants from two regions, containing genes IL18RAP and CCR3, showed significant cis genotype-expression correlations in the peripheral blood but not in the B cell line datasets. We identified 14 genes where a SNP affected the expression of different probes within the same gene, but in opposite allelic directions. By incorporating genetic variation in co-expression analyses, functional relationships between genes can be more significantly detected. CONCLUSION: In conclusion, the complex nature of genotypic effects in human populations makes the use of a relevant tissue, large datasets, and analysis of different exons essential to enable the identification of the function for many genetic risk variants in common diseases.Coeliac UKNetherlands Organization for Scientific ResearchCeliac Disease Consortium (an innovative cluster approved by the Netherlands Genomics Initiative and partly funded by the Dutch government)Netherlands Genomics InitiativeWellcome Trus
Trans-eQTLs Reveal That Independent Genetic Variants Associated with a Complex Phenotype Converge on Intermediate Genes, with a Major Role for the HLA
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Рідке мило на основі соапстоків після нейтралізації олій та жирів в нейтралізуючому розчині, що містить етанол
Development and application of statistical models for medical scientific researc
Coeliac disease-associated risk variants in TNFAIP3 and REL implicate altered NF-kappaB signalling
Objective: Our previous coeliac disease genome-wide association study (GWAS) implicated risk variants in the human leucocyte antigen (HLA) region and eight novel risk regions. To identify more coeliac disease loci, we selected 458 single nucleotide polymorphisms (SNPs) that showed more modest association in the GWAS for genotyping and analysis in four independent cohorts. Design: 458 SNPs were assayed in 1682 cases and 3258 controls from three populations (UK, Irish and Dutch). We combined the results with the original GWAS cohort (767 UK cases and 1422 controls); six SNPs showed association with p Results: We identified two novel coeliac disease risk regions: 6q23.3 (OLIG3-TNFAIP3) and 2p16.1 (REL), both of which reached genome-wide significance in the combined analysis of all 2987 cases and 5273 controls (rs2327832 p= 1.3x10(-08), and rs842647 p= 5.26x10(-07)). We investigated the expression of these genes in the RNA isolated from biopsies and from whole blood RNA. We did not observe any changes in gene expression, nor in the correlation of genotype with gene expression. Conclusions: Both TNFAIP3 (A20, at the protein level) and REL are key mediators in the nuclear factor kappa B (NF-kappa B) inflammatory signalling pathway. For the first time, a role for primary heritable variation in this important biological pathway predisposing to coeliac disease has been identified. Currently, the HLA risk factors and the 10 established non-HLA risk factors explain similar to 40% of the heritability of coeliac disease
Improving coeliac disease risk prediction by testing non-HLA variants additional to HLA variants
Improving coeliac disease risk prediction by testing non-HLA variants additional to HLA variants
Background: The majority of coeliac disease (CD) patients are not being properly diagnosed and therefore remain untreated, leading to a greater risk of developing CD-associated complications. The major genetic risk heterodimer, HLA-DQ2 and DQ8, is already used clinically to help exclude disease. However, approximately 40% of the population carry these alleles and the majority never develop CD. Objective: We explored whether CD risk prediction can be improved by adding non-HLA-susceptible variants to common HLA testing. Design: We developed an average weighted genetic risk score with 10, 26 and 57 single nucleotide polymorphisms (SNP) in 2675 cases and 2815 controls and assessed the improvement in risk prediction provided by the non-HLA SNP. Moreover, we assessed the transferability of the genetic risk model with 26 non-HLA variants to a nested case–control population (n=1709) and a prospective cohort (n=1245) and then tested how well this model predicted CD outcome for 985 independent individuals. Results: Adding 57 non-HLA variants to HLA testing showed a statistically significant improvement compared to scores from models based on HLA only, HLA plus 10 SNP and HLA plus 26 SNP. With 57 non-HLA variants, the area under the receiver operator characteristic curve reached 0.854 compared to 0.823 for HLA only, and 11.1% of individuals were reclassified to a more accurate risk group. We show that the risk model with HLA plus 26 SNP is useful in independent populations. Conclusions: Predicting risk with 57 additional non-HLA variants improved the identification of potential CD patients. This demonstrates a possible role for combined HLA and non-HLA genetic testing in diagnostic work for CD
- …
