5,124 research outputs found
Atmospheric Chemistry for Astrophysicists: A Self-consistent Formalism and Analytical Solutions for Arbitrary C/O
We present a self-consistent formalism for computing and understanding the
atmospheric chemistry of exoplanets from the viewpoint of an astrophysicist.
Starting from the first law of thermodynamics, we demonstrate that the van't
Hoff equation (which describes the equilibrium constant), Arrhenius equation
(which describes the rate coefficients) and procedures associated with the
Gibbs free energy (minimisation, rescaling) have a common physical and
mathematical origin. We address an ambiguity associated with the equilibrium
constant, which is used to relate the forward and reverse rate coefficients,
and restate its two definitions. By necessity, one of the equilibrium constants
must be dimensionless and equate to an exponential function involving the Gibbs
free energy, while the other is a ratio of rate coefficients and must therefore
possess physical units. We demonstrate that the Arrhenius equation takes on a
functional form that is more general than previously stated without recourse to
tagging on ad hoc functional forms. Finally, we derive analytical models of
chemical systems, in equilibrium, with carbon, hydrogen and oxygen. We include
acetylene and are able to reproduce several key trends, versus temperature and
carbon-to-oxygen ratio, published in the literature. The rich variety of
behavior that mixing ratios exhibit as a function of the carbon-to-oxygen ratio
is merely the outcome of stoichiometric book-keeping and not the direct
consequence of temperature or pressure variations.Comment: Accepted by ApJ. 9 pages, 4 figure
Kinetics of sharp intergranular corrosion fissures in AA7178
During service in structural aircraft applications, AA7178 has been found to develop sharp intergranular corrosion (IGC) fissures, a special form of attack. A new laboratory approach to quantify the kinetics of sharp IGC fissure growth was developed in this work. Sharp IGC fissures, similar to those formed in service, grew in samples that were given an electrochemical pre-treatment and then exposed in a humid environment. The time for the first sharp IGC fissure to penetrate the thin sample was determined by visual observation of the back side of the sample. The depth of the sharp IGC fissure was determined by serial sectioning. The kinetics measured by this approach did not represent the fastest rates, but rather the rates of long sharp IGC fissures. Relative humidity had no measurable effect on fissure kinetics, indicating that there was little connection of the local sharp IGC fissure region with the outside environment. AA7178 in the as-received and T7 conditions exhibited slower sharp IGC fissure rates than in the T6 condition. The sharp IGC fissures were found to be filled with corrosion products, which possibly exert a stress that could play an important role in driving fissure growth. It is suggested that the sharp IGC fissure could be a form of SCC.The authors acknowledge funding from the Aging Aircraft Division of ASC in support of the Aeronautical Enterprise Structures Strategy with a contract through S & K Technologies
Evidence for Factorization in Three-body Decays
Motivated by experimental results on , we use a
factorization approach to study these decays. Two mechanisms concerning kaon
pair production arise: current-produced (from vacuum) and transition (from the
meson). The kaon pair in the decays can be
produced only by the vector current (current-produced), whose matrix element
can be extracted from processes via isospin relations. The
decay rates obtained this way are in good agreement with experiment. The
decays involve both current-produced and transition
processes. By using QCD counting rules and the measured decay rates, the measured decay spectra can be understood.Comment: 3 pages, 6 figures. Talk presented at EPS2003 Conference, Aachen,
Germany, July 200
THOR 2.0: Major Improvements to the Open-Source General Circulation Model
THOR is the first open-source general circulation model (GCM) developed from
scratch to study the atmospheres and climates of exoplanets, free from Earth-
or Solar System-centric tunings. It solves the general non-hydrostatic Euler
equations (instead of the primitive equations) on a sphere using the
icosahedral grid. In the current study, we report major upgrades to THOR,
building upon the work of Mendon\c{c}a et al. (2016). First, while the
Horizontally Explicit Vertically Implicit (HEVI) integration scheme is the same
as that described in Mendon\c{c}a et al. (2016), we provide a clearer
description of the scheme and improved its implementation in the code. The
differences in implementation between the hydrostatic shallow (HSS),
quasi-hydrostatic deep (QHD) and non-hydrostatic deep (NHD) treatments are
fully detailed. Second, standard physics modules are added: two-stream,
double-gray radiative transfer and dry convective adjustment. Third, THOR is
tested on additional benchmarks: tidally-locked Earth, deep hot Jupiter,
acoustic wave, and gravity wave. Fourth, we report that differences between the
hydrostatic and non-hydrostatic simulations are negligible in the Earth case,
but pronounced in the hot Jupiter case. Finally, the effects of the so-called
"sponge layer", a form of drag implemented in most GCMs to provide numerical
stability, are examined. Overall, these upgrades have improved the flexibility,
user-friendliness, and stability of THOR.Comment: 57 pages, 31 figures, revised, accepted for publication in ApJ
Generalized Model for IGC Growth in Aluminum Alloys
A generalized brick wall model is developed to describe intergranular corrosion in Equi-axedAA7178-T6 and Wingskin AA7178-T6 aluminum alloys. The intergranular corrosion rate is highly related to grain size and shape. High strength aluminum alloys are often elongated and anisotropic, with the fastest nominal IGC growth rate in the longitudinal direction (L) or long transverse direction (T) and the slowest in the short transverse direction (S). We propose a three-way intersection model and use it to simulate the corrosion kinetics for each direction. With a proper combination of model parameters, the generalized IGC model provides a good fit to experimental data developed by the foil penetration technique
The Peculiar Atmospheric Chemistry of KELT-9b
The atmospheric temperatures of the ultra-hot Jupiter KELT-9b straddle the
transition between gas giants and stars, and therefore between two
traditionally distinct regimes of atmospheric chemistry. Previous theoretical
studies assume the atmosphere of KELT-9b to be in chemical equilibrium. Despite
the high ultraviolet flux from KELT-9, we show using photochemical kinetics
calculations that the observable atmosphere of KELT-9b is predicted to be close
to chemical equilibrium, which greatly simplifies any theoretical
interpretation of its spectra. It also makes the atmosphere of KELT-9b, which
is expected to be cloudfree, a tightly constrained chemical system that lends
itself to a clean set of theoretical predictions. Due to the lower pressures
probed in transmission (compared to emission) spectroscopy, we predict the
abundance of water to vary by several orders of magnitude across the
atmospheric limb depending on temperature, which makes water a sensitive
thermometer. Carbon monoxide is predicted to be the dominant molecule under a
wide range of scenarios, rendering it a robust diagnostic of the metallicity
when analyzed in tandem with water. All of the other usual suspects (acetylene,
ammonia, carbon dioxide, hydrogen cyanide, methane) are predicted to be
subdominant at solar metallicity, while atomic oxygen, iron and magnesium are
predicted to have relative abundances as high as 1 part in 10,000. Neutral
atomic iron is predicted to be seen through a forest of optical and
near-infrared lines, which makes KELT-9b suitable for high-resolution
ground-based spectroscopy with HARPS-N or CARMENES. We summarize future
observational prospects of characterizing the atmosphere of KELT-9b.Comment: Accepted by ApJ. 9 pages, 6 figures. Corrected minor errors in
Figures 1a and 1b (some line styles were switched by accident), text and
conclusions unchanged, these minor changes will be updated in final ApJ proo
- …
