501 research outputs found

    An Iterative Procedure for Solving Nonsmooth Generalized Equation

    Get PDF
    2000 Mathematics Subject Classification: 47H04, 65K10.In this article, we study a general iterative procedure of the following form 0 ∈ f(xk)+F(xk+1), where f is a function and F is a set valued map acting from a Banach space X to a linear normed space Y, for solving generalized equations in the nonsmooth framework. We prove that this method is locally Q-linearly convergent to x* a solution of the generalized equation 0 ∈ f(x)+F(x) if the set-valued map [f(x*)+g(·)−g(x*)+F(·)]−1 is Aubin continuous at (0,x*), where g:X→ Y is a function, whose Fréchet derivative is L-Lipschitz

    On bromine, nitrogen oxides and ozone depletion in the tropospheric plume of Erebus volcano (Antarctica)

    Get PDF
    International audienceSince the discovery of bromine oxide (BrO) in volcanic emissions, there has been speculation concerning its role in chemical evolution and notably ozone depletion in volcanic plumes. We report the first measurements using Differential Optical Absorption Spectroscopy (DOAS) of BrO in the tropospheric plume of the persistently degassing Erebus volcano (Antarctica). These are the first observations pertaining to emissions from an alkaline phonolitic magma. The observed BrO/SO2 ratio of 2.5 x 10-4 is similar to that measured at andesitic arc volcanoes. The high abundance of BrO is consistent with high abundances of F and Cl relative to sulfur in the Erebus plume. Our estimations of HBr flux and BrO production rate suggest that reactive bromine chemistry can explain a 35% loss of tropospheric O3 observed in the Erebus plume at approximately 30 km from source (Oppenheimer et al., 2010). Erebus also has a permanent lava lake, which could result in generation of NOx by thermal fixation of atmospheric N2 at the hot lava surface. Any NOx emission could play a potent role in reactive bromine chemistry. However, the presence of NO2 could not be detected in the plume, about 400 m above the lake, in our DOAS observations of 2005. Nor could we reproduce spectroscopic retrievals that reportedly identified NO2 in DOAS observations from 2003 made of the Erebus plume (Oppenheimer et al., 2005). Based on the NO2 detection limit of our analysis, we can state an upper limit of the NO2/SO2 ratio of ≤ 0.012, an order of magnitude lower than previously reported. Our new result supports a rapid oxidation of NOx in the young plume and is more consistent with measurements of NOy species measured using an instrumented aircraft flying in the plume. Model simulations, tuned for Erebus, were performed to reproduce the BrO/SO2 observed in the young plume and to investigate the impact of NOx emissions at source on the subsequent formation of BrO in the plume. They support our hypothesis of rapid conversion of NOx to NOy in the vicinity of the lava lake. This study thus places new constraints on the interaction between reactive nitrogen and bromine species in volcanic plumes, and its effects on ozone

    First estimate of volcanic SO2 budget for Vanuatu island arc

    Get PDF
    International audienceThe spatial and temporal coverage of measurements of previous termvolcanicnext term gas emissions remains patchy. However, over the last decade, emissions inventories have improved thanks to new measurements of some of the lesser-known previous termvolcanicnext term areas. We report on one such region - the Vanuatu island arc, in the Southwest Pacific - for which we now have sufficient systematic observations to offer a systematic emissions inventory. Our new estimate is based on SO2 flux measurements made in the period 2004-2009 with ultraviolet spectroscopy techniques for the following volcanoes: Yasur, Lopevi, Ambrym, Ambae, Gaua and Vanua Lava (from south to north). These are the first ever measurements for Lopevi, Gaua and Vanua Lava. The results reveal the Vanuatu arc as one of Earth's prominent sources of previous termvolcanicnext term degassing with a characteristic annual emission to the atmosphere of ~ 3 Tg of SO2 (representing about 20% of hitherto published global estimates). Our new dataset highlights the sustained prodigious degassing of Ambrym volcano, whose 5 Gg d-1 mean flux of SO2 represents nearly two-thirds of the total budget for the Vanuatu arc. This confirms Ambrym as one of the largest previous termvolcanic sources worldwide comparable to Etna, often considered as the most vigorous source of previous termvolcanic emission on Earth. We also report a high degassing for Ambae of ~ 2 Gg d-1 SO2, representing more than 28 % of the Vanuatu arc budget. Thus, 90 % of the SO2 output from Vanuatu is focused in the central part of the arc (from Ambrym and Ambae) where magmas originate from enriched Indian-type mantle and where peculiar tectonic conditions could favour high magma production rates

    Characterization of Electrochemically Deposited Ce1-xZrxO2 Layers Modified with Cobalt Oxide for Electrocatalytic Conversion of NOx and CO

    Get PDF
    A method for electrochemical deposition of a two-component Ce1−xZrxO2 system on stainless steel substrate that is attractive from catalytic point of view is proposed. As reported in the literature, it is a promising carrier layer for the production of catalytic converters for purification of exhaust gases containing NOx and CO. This system is modified by electrodeposition of a thin film of cobalt oxide over it. A series of samples of the Ce1−xZrxO2/СоxОy system was produced with various concentrations and proportions of the components. These samples are characterized by XRD, SEM, EDS, XPS and РCС (partial electrocatalytic curves) of CO oxidation and of NОx reduction. Based on the obtained results, it has been concluded that the electrodeposited two-component Ce1−xZrxO2 system is a solid solution with composition, structure, and physicochemical properties that make it suitable for use as active phase carrier for catalytic oxidation of CO and reduction of NOx

    Insights into volcanic hazards and plume chemistry from multi-parameter observations: the eruptions of Fimmvörðuháls and Eyjafjallajökull (2010) and Holuhraun (2014–2015)

    Get PDF
    The eruptions of Eyjafjallajökull volcano in 2010 (including its initial effusive phase at Fimmvörðuháls and its later explosive phase from the central volcano) and Bárðarbunga volcano in 2014–2015 (at Holuhraun) were widely reported. Here, we report on complementary, interdisciplinary observations made of the eruptive gases and lavas that shed light on the processes and atmospheric impacts of the eruptions, and afford an intercomparison of contrasting eruptive styles and hazards. We find that (i) consistent with other authors, there are substantial differences in the gas composition between the eruptions; namely that the deeper stored Eyjafjallajökull magmas led to greater enrichment in Cl relative to S; (ii) lava field SO2 degassing was measured to be 5–20% of the total emissions during Holuhraun, and the lava emissions were enriched in Cl at both fissure eruptions—particularly Fimmvörðuháls; and (iii) BrO is produced in Icelandic plumes in spite of the low UV levels

    Sealing of cerium oxide coating primers on anodized AA2024-T3 alloy by boiling in Lourier buffers

    Get PDF
    Although their exceptional re-passivation ability, Al-alloys are susceptible to corrosion due to the amphoteric nature of the alumina passivation films. This issue is exacerbated by the disruption of these films by intermetallics on the surfaces of highly doped ones, like AA2024-T3 aircraft alloy. The combination of anodized aluminium oxide (AAO) and cerium conversion coatings (CeCC) shows promise as a coating primer. However, the defective structures of CeO2 and Al2O3 require additional sealing. This research proposes sealing the CeCC/AAO layer by boiling it for 10 minutes in two relatively neutral Lourier buffers, adjusted to pH 7.75, and in a mixture of them. The samples underwent a series of analyses to compare the impact of the sealing procedure on surface topology, properties (e.g., colour and wettability on two samples from each set), and corrosion protective ability. It was assessed after 24 hours of exposure to 3.5 % NaCl model corrosive medium on six samples from each set. The assessments included electrochemical impedance spectroscopy (EIS) and potentiodynamic scanning (PDS) techniques. The results indicate that the borate buffer improves the corrosion protection of the coating primers more effectively than the phosphate and mixed ones

    Insights into volcanic hazards and plume chemistry from multi-parameter observations: the eruptions of Fimmvörðuháls and Eyjafjallajökull (2010) and Holuhraun (2014–2015)

    Get PDF
    The eruptions of Eyjafjallajökull volcano in 2010 (including its initial effusive phase at Fimmvörðuháls and its later explosive phase from the central volcano) and Bárðarbunga volcano in 2014–2015 (at Holuhraun) were widely reported. Here, we report on complementary, interdisciplinary observations made of the eruptive gases and lavas that shed light on the processes and atmospheric impacts of the eruptions, and afford an intercomparison of contrasting eruptive styles and hazards. We find that (i) consistent with other authors, there are substantial differences in the gas composition between the eruptions; namely that the deeper stored Eyjafjallajökull magmas led to greater enrichment in Cl relative to S; (ii) lava field SO2 degassing was measured to be 5–20% of the total emissions during Holuhraun, and the lava emissions were enriched in Cl at both fissure eruptions—particularly Fimmvörðuháls; and (iii) BrO is produced in Icelandic plumes in spite of the low UV levels
    corecore