19,831 research outputs found
A novel approach to collaborative product development in the medical-equipment industry
In this study, we summarise the requirements for collaborative product development based on our investigation of the differences in the resources and tools that are needed for the various stages of collaborative product development and the needs of system users during these various stages. We proposed a user-oriented approach of collaborative product development for medical equipment and designed a collaborative product development system with the required functionalities to satisfy different areas according to their roles and workflow. The system we developed can drastically simplify the original complex and dispersed process of product development for intelligent medical equipment, thereby allowing the project team to develop new medical-equipment products and promote interactions among the research and development staff, clinical specialists, and the test participants successfully, thereby resulting in a user-oriented collaborative product development process
Niobium hyperfine structure in crystal calcium tungstate
A study of the niobium hyperfine structure in single crystal calcium tungstate was made by the combination of the technique of electron paramagnetic resonance and electron nuclear double resonance (EPR/ENDOR). The microwave frequency was about 9.4 GHz and the radio frequency from 20MHz to 70 MHz. The rare earth ions Nd(3+), U(3+), or Tm(3+) were added as the charge compensator for Nb(5+). To create niobium paramagnetic centers, the sample was irradiated at 77 deg K with a 10 thousand curie Co-60 gamma source for 1 to 2 hours at a dose rate of 200 K rads per hour and then transferred quickly into the cavity. In a general direction of magnetic field, the spectra showed 4 sets of 10 main lines corresponding to 4 nonequivalent sites of niobium with I = 9/2. These 4 sets of lines coalesced into 2 sets of 10 in the ab-plane and into a single set of 10 along the c-axis. This symmetry suggested that the tungsten ions are substituted by the niobium ions in the crystal
Aerodynamics of thrust vectoring by Navier-Stokes solutions
Induced aerodynamics from thrust vectoring are investigated by a computational fluid dynamic method. A thin-layer Reynolds-averaged Navier-Stokes code with multiblock capability is used. Jet properties are specified on the nozzle exit plane to simulate the jet momentum. Results for a rectangular jet in a cross flow are compared with data to verify the code. Further verification of the calculation is made by comparing the numerical results with transonic data for a wing-body combination. Additional calculations were performed to elucidate the following thrust vectoring effects: the thrust vectoring effect on shock and expansion waves, induced effects on nearby surfaces, and the thrust vectoring effect on the leading edge vortex
Aerodynamics of thrust vectoring
Thrust vectoring as a means to enhance maneuverability and aerodynamic performane of a tactical aircraft is discussed. This concept usually involves the installation of a multifunction nozzle. With the nozzle, the engine thrust can be changed in direction without changing the attitude of the aircraft. Change in the direction of thrust induces a significant change in the aerodynamic forces on the aircraft. Therefore, this device can be used for lift-augmenting as well as stability and control purposes. When the thrust is deflected in the longitudinal direction, the lift force and the pitching stability can be manipulated, while the yawing stability can be controlled by directing the thrust in the lateral direction
Calculation of aerodynamic characteristics of airplane configurations at high angles of attack
Calculation of longitudinal and lateral directional aerodynamic characteristics of airplanes by the VORSTAB code is examined. The numerical predictions are based on the potential flow theory with corrections of high angle of attack phenomena; namely, vortex flow and boundary layer separation effects. To account for the vortex flow effect, vortex lift, vortex action point, augmented vortex lift and vortex breakdown effect through the method of suction analogy are included. The effect of boundary layer separation is obtained by matching the nonlinear section data with the three dimensional lift characteristics iteratively. Through correlation with results for nine fighter configurations, it is concluded that reasonably accurate prediction of longitudinal and static lateral directional aerodynamics can be obtained with the VORSTAB code up to an angle of attack at which wake interference and forebody vortex effect are not important. Possible reasons for discrepancy at higher angles of attack are discussed
Reduced 30% scanning time 3D multiplexer integrated circuit applied to large array format 20KHZ frequency inkjet print heads
Enhancement of the number and array density of nozzles within an inkjet head
chip is one of the keys to raise the printing speed and printing resolutions.
However, traditional 2D architecture of driving circuits can not meet the
requirement for high scanning speed and low data accessing points when nozzle
numbers greater than 1000. This paper proposes a novel architecture of
high-selection-speed three-dimensional data registration for inkjet
applications. With the configuration of three-dimensional data registration,
the number of data accessing points as well as the scanning lines can be
greatly reduced for large array inkjet printheads with nozzles numbering more
than 1000. This IC (Integrated Circuit) architecture involves three-dimensional
multiplexing with the provision of a gating transistor for each ink firing
resistor, where ink firing resistors are triggered only by the selection of
their associated gating transistors. Three signals: selection (S), address (A),
and power supply (P), are employed together to activate a nozzle for droplet
ejection. The smart printhead controller has been designed by a 0.35 um CMOS
process with a total circuit area, 2500 x 500 microm2, which is 80% of the
cirucuit area by 2D configuration for 1000 nozzles. Experiment results
demonstrate the functionality of the fabricated IC in operation, signal
transmission and a potential to control more than 1000 nozzles with only 31
data access points and reduced 30% scanning time.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/EDA-Publishing
- …
