442 research outputs found

    An Ontology Based Method to Solve Query Identifier Heterogeneity in Post-Genomic Clinical Trials

    Get PDF
    The increasing amount of information available for biomedical research has led to issues related to knowledge discovery in large collections of data. Moreover, Information Retrieval techniques must consider heterogeneities present in databases, initially belonging to different domains—e.g. clinical and genetic data. One of the goals, among others, of the ACGT European is to provide seamless and homogeneous access to integrated databases. In this work, we describe an approach to overcome heterogeneities in identifiers inside queries. We present an ontology classifying the most common identifier semantic heterogeneities, and a service that makes use of it to cope with the problem using the described approach. Finally, we illustrate the solution by analysing a set of real queries

    Applications of the ACGT Master Ontology on Cancer

    Get PDF
    In this paper we present applications of the ACGT Master Ontology (MO) which is a new terminology resource for a transnational network providing data exchange in oncology, emphasizing the integration of both clinical and molecular data. The development of a new ontology was necessary due to problems with existing biomedical ontologies in oncology. The ACGT MO is a test case for the application of best practices in ontology development. This paper provides an overview of the application of the ontology within the ACGT project thus far

    Video-Based Depression Detection Using Local Curvelet Binary Patterns in Pairwise Orthogonal Planes

    No full text
    International audienceDepression is an increasingly prevalent mood disorder. This is the reason why the field of computer-based depression assessment has been gaining the attention of the research community during the past couple of years. The present work proposes two algorithms for depression detection, one Frame-based and the second Video-based, both employing Curvelet transform and Local Binary Patterns. The main advantage of these methods is that they have significantly lower computational requirements, as the extracted features are of very low dimensionality. This is achieved by modifying the previously proposed algorithm which considers Three-Orthogonal-Planes, to only Pairwise-Orthogonal-Planes. Performance of the algorithms was tested on the benchmark dataset provided by the Audio/Visual Emotion Challenge 2014, with the person-specific system achieving 97.6% classification accuracy, and the person-independed one yielding promising preliminary results of 74.5% accuracy. The paper concludes with open issues, proposed solutions, and future plans

    Ontology Based Integration of Distributed and Heterogeneous Data Sources in ACGT.

    Full text link
    In this work, we describe the set of tools comprising the Data Access Infrastructure within Advancing Clinic-genomic Trials on Cancer (ACGT), a R&D Project funded in part by the European. This infrastructure aims at improving Post-genomic clinical trials by providing seamless access to integrated clinical, genetic, and image databases. A data access layer, based on OGSA-DAI, has been developed in order to cope with syntactic heterogeneities in databases. The semantic problems present in data sources with different nature are tackled by two core tools, namely the Semantic Mediator and the Master Ontology on Cancer. The ontology is used as a common framework for semantics, modeling the domain and acting as giving support to homogenization. SPARQL has been selected as query language for the Data Access Services and the Mediator. Two experiments have been carried out in order to test the suitability of the selected approach, integrating clinical and DICOM image databases

    Ontology-driven monitoring of patient's vital signs enabling personalized medical detection and alert

    Get PDF
    A major challenge related to caring for patients with chronic conditions is the early detection of exacerbations of the disease. Medical personnel should be contacted immediately in order to intervene in time before an acute state is reached, ensuring patient safety. This paper proposes an approach to an ambient intelligence (AmI) framework supporting real-time remote monitoring of patients diagnosed with congestive heart failure (CHF). Its novelty is the integration of: (i) personalized monitoring of the patients health status and risk stage; (ii) intelligent alerting of the dedicated physician through the construction of medical workflows on-the-fly; and (iii) dynamic adaptation of the vital signs' monitoring environment on any available device or smart phone located in close proximity to the physician depending on new medical measurements, additional disease specifications or the failure of the infrastructure. The intelligence lies in the adoption of semantics providing for a personalized and automated emergency alerting that smoothly interacts with the physician, regardless of his location, ensuring timely intervention during an emergency. It is evaluated on a medical emergency scenario, where in the case of exceeded patient thresholds, medical personnel are localized and contacted, presenting ad hoc information on the patient's condition on the most suited device within the physician's reach

    A CrossMod-Transformer deep learning framework for multi-modal pain detection through EDA and ECG fusion

    Get PDF
    Pain is a multifaceted phenomenon that significantly affects a large portion of the global population. Objective pain assessment is essential for developing effective management strategies, which in turn contribute to more efficient and responsive healthcare systems. However, accurately evaluating pain remains a complex challenge due to subtle physiological and behavioural indicators, individual-specific pain responses, and the need for continuous patient monitoring. Automatic pain assessment systems offer promising, technology-driven solutions to support and enhance various aspects of the pain evaluation process. Physiological indicators offer valuable insights into pain-related states and are generally less influenced by individual variability compared to behavioural modalities, such as facial expressions. Skin conductance, regulated by sweat gland activity, and the heart’s electrical signals are both influenced by changes in the sympathetic nervous system. Biosignals, such as electrodermal activity (EDA) and electrocardiogram (ECG), can, therefore, objectively capture the body’s physiological responses to painful stimuli. This paper proposes a novel multi-modal ensemble deep learning framework that combines electrodermal activity and electrocardiogram signals for automatic pain recognition. The proposed framework includes a uni-modal approach (FCN-ALSTM-Transformer) comprising a Fully Convolutional Network, Attention-based LSTM, and a Transformer block to integrate features extracted by these models. Additionally, a multi-modal approach (CrossMod-Transformer) is introduced, featuring a dedicated Transformer architecture that fuses electrodermal activity and electrocardiogram signals. Experimental evaluations were primarily conducted on the BioVid dataset, with further cross-dataset validation using the AI4PAIN 2025 dataset to assess the generalisability of the proposed method. Notably, the CrossMod-Transformer achieved an accuracy of 87.52% on Biovid and 75.83% on AI4PAIN, demonstrating strong performance across independent datasets and outperforming several state-of-the-art uni-modal and multi-modal methods. These results highlight the potential of the proposed framework to improve the reliability of automatic multi-modal pain recognition and support the development of more objective and inclusive clinical assessment tools

    Mirror mirror on the wall... an unobtrusive intelligent multisensory mirror for well-being status self-assessment and visualization

    Get PDF
    A person’s well-being status is reflected by their face through a combination of facial expressions and physical signs. The SEMEOTICONS project translates the semeiotic code of the human face into measurements and computational descriptors that are automatically extracted from images, videos and 3D scans of the face. SEMEOTICONS developed a multisensory platform in the form of a smart mirror to identify signs related to cardio-metabolic risk. The aim was to enable users to self-monitor their well-being status over time and guide them to improve their lifestyle. Significant scientific and technological challenges have been addressed to build the multisensory mirror, from touchless data acquisition, to real-time processing and integration of multimodal data

    Outcome prediction based on microarray analysis: a critical perspective on methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information extraction from microarrays has not yet been widely used in diagnostic or prognostic decision-support systems, due to the diversity of results produced by the available techniques, their instability on different data sets and the inability to relate statistical significance with biological relevance. Thus, there is an urgent need to address the statistical framework of microarray analysis and identify its drawbacks and limitations, which will enable us to thoroughly compare methodologies under the same experimental set-up and associate results with confidence intervals meaningful to clinicians. In this study we consider gene-selection algorithms with the aim to reveal inefficiencies in performance evaluation and address aspects that can reduce uncertainty in algorithmic validation.</p> <p>Results</p> <p>A computational study is performed related to the performance of several gene selection methodologies on publicly available microarray data. Three basic types of experimental scenarios are evaluated, i.e. the independent test-set and the 10-fold cross-validation (CV) using maximum and average performance measures. Feature selection methods behave differently under different validation strategies. The performance results from CV do not mach well those from the independent test-set, except for the support vector machines (SVM) and the least squares SVM methods. However, these wrapper methods achieve variable (often low) performance, whereas the hybrid methods attain consistently higher accuracies. The use of an independent test-set within CV is important for the evaluation of the predictive power of algorithms. The optimal size of the selected gene-set also appears to be dependent on the evaluation scheme. The consistency of selected genes over variation of the training-set is another aspect important in reducing uncertainty in the evaluation of the derived gene signature. In all cases the presence of outlier samples can seriously affect algorithmic performance.</p> <p>Conclusion</p> <p>Multiple parameters can influence the selection of a gene-signature and its predictive power, thus possible biases in validation methods must always be accounted for. This paper illustrates that independent test-set evaluation reduces the bias of CV, and case-specific measures reveal stability characteristics of the gene-signature over changes of the training set. Moreover, frequency measures on gene selection address the algorithmic consistency in selecting the same gene signature under different training conditions. These issues contribute to the development of an objective evaluation framework and aid the derivation of statistically consistent gene signatures that could eventually be correlated with biological relevance. The benefits of the proposed framework are supported by the evaluation results and methodological comparisons performed for several gene-selection algorithms on three publicly available datasets.</p
    corecore