19 research outputs found

    Structure of the carbon layers deposited on the toroidal pump limiter of Tore Supra

    Get PDF
    International audienceScanning and transmission electron microscopy analyses have been performed for tiles extracted from the toroidal pump limiter of Tore Supra for erosion- and deposition-dominated zones. Deposit thicknesses have been estimated for the plasma-facing top and the gap side lateral surfaces. Deposit thickness profiles have been measured inside gaps, showing that deposition mainly occurs in the first millimetre and that both poloidal and toroidal gap deposition is asymmetric. Quantitative information on the deposit volume and on D-retention are thus obtained from these measurements. Carbon probed at the tile top surfaces is mainly amorphous carbon, due either to the amorphization induced by ion bombardment in the erosion dominated zone, or to deposit formation processes in the deposition-dominated zones. Deposits are tip-shaped and are oriented, which should give information on transport processes

    Ex Situ LIBS Analysis of WEST Divertor Wall Tiles after C3 Campaign

    Get PDF
    Fuel retention monitoring in tokamak walls requires the development of remote composition analysis methods such as laser-induced breakdown spectroscopy (LIBS). The present study investigates the feasibility of the LIBS method to analyse the composition and fuel retention in three samples from WEST divertor erosion marker tiles after the experimental campaign C3. The investigated samples originated from tile regions outside of strong erosion and deposition regions, where the variation of thin deposit layers is relatively small and facilitates cross-comparison between different analysis methods. The depth profiles of main constituents W, Mo and C were consistent with depth profiles determined by other composition analysis methods, such as glow-discharge optical emission spectroscopy (GDOES) and secondary ion mass spectrometry (SIMS). The average LIBS depth resolution determined from depth profiles was 100 nm/shot. The averaging of the spectra collected from multiple spots of a same sample allowed us to improve the signal-to-noise ratio, investigate the presence of fuel D and trace impurities such as O and B. In the investigated tile regions with negligible erosion and deposition, these impurities were clearly detectable during the first laser shot, while the signal decreased to noise level after a few subsequent laser shots at the same spot. LIBS investigation of samples originating from the deposition regions of tiles may further clarify LIBS’ ability to investigate trace impurities

    Plasma-wall interaction studies within the EUROfusion consortium: Progress on plasma-facing components development and qualification

    Get PDF
    This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma-material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.European Commission; Consortium for Ocean Leadership 633053; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    The WEST programme: Minimizing technology and operational risks of a full actively cooled tungsten divertor on ITER

    No full text
    International audienceThe WEST programme consists in transforming the Tore Supra tokamak into an X point divertor device, while taking advantage of its long discharge capability. This is obtained by inserting in vessel coils to create the X point while adapting the in-vessel elements to this new geometry. This will allow the full tungsten divertor technology to be used on ITER to be tested in anticipation of its use on ITER under relevant heat loading conditions and pulse duration. The early manufacturing of a significant industrial series of ITER-similar W plasma-facing units will contribute to the ITER divertor manufacturing risk mitigation and to that associated with early W divertor plasma operation on ITER

    Ex Situ LIBS Analysis of WEST Divertor Wall Tiles after C3 Campaign

    No full text
    Fuel retention monitoring in tokamak walls requires the development of remote composition analysis methods such as laser-induced breakdown spectroscopy (LIBS). The present study investigates the feasibility of the LIBS method to analyse the composition and fuel retention in three samples from WEST divertor erosion marker tiles after the experimental campaign C3. The investigated samples originated from tile regions outside of strong erosion and deposition regions, where the variation of thin deposit layers is relatively small and facilitates cross-comparison between different analysis methods. The depth profiles of main constituents W, Mo and C were consistent with depth profiles determined by other composition analysis methods, such as glow-discharge optical emission spectroscopy (GDOES) and secondary ion mass spectrometry (SIMS). The average LIBS depth resolution determined from depth profiles was 100 nm/shot. The averaging of the spectra collected from multiple spots of a same sample allowed us to improve the signal-to-noise ratio, investigate the presence of fuel D and trace impurities such as O and B. In the investigated tile regions with negligible erosion and deposition, these impurities were clearly detectable during the first laser shot, while the signal decreased to noise level after a few subsequent laser shots at the same spot. LIBS investigation of samples originating from the deposition regions of tiles may further clarify LIBS’ ability to investigate trace impurities.</jats:p

    Stability analysis of WEST L-mode discharges with improved confinement from boron powder injection

    No full text
    International audienceWEST L-mode plasmas with dominant electron heating and no core torque source have observed improvements in confinement during boron (B) powder injection. These results are reminiscent of previous powder injection experiments on other devices and gaseous impurity seeding experiments on WEST. During powder injection, the stored energy increased up to 25% due to enhanced ion and electron heat and particle confinement. The improvements in confinement were not indicative of an L-H transition. To identify the dominant mechanisms and the causality chain behind these improvements in confinement, we employ interpretative modelling using METIS, predictive integrated modelling using a high-fidelity plasma simulator (HFPS), and stand-alone gyrokinetic simulations using QuaLiKiz. Interpretative modelling with METIS allowed for the estimation of missing data while maintaining good overall consistency with experiment. These results provided the initial conditions for fully predictive flux driven simulations using the HFPS. From these simulations, quasi-linear gyrokinetic analysis was performed at ρ=0.5 and ρ=0.65. Collisionality was found to be a strong candidate for turbulence suppression at ρ=0.5, while a combination of collisionality and the TeT_e /TiT_i ratio was found to be the likely mechanism at ρ=0.65. The results additionally suggested that increased ZeffZ_{eff} (through main ion dilution) could play a role in the improved confinement, but this could not be confirmed due to a lack of experimental measurements. The modelling framework established here can now be used to evaluate and exploit a variety of future powder injection experiments
    corecore