2,670 research outputs found
SDN-based virtual machine management for cloud data centers
Software-Defined Networking (SDN) is an emerging paradigm to logically centralize the network control plane and automate the configuration of individual network elements. At the same time, in Cloud Data Centers (DCs), even though network and server resources converge over the same infrastructure and typically over a single administrative entity, disjoint control mechanisms are used for their respective management. In this paper, we propose a unified server-network control mechanism for converged ICT environments. We present a SDN-based orchestration framework for live Virtual Machine (VM) management where server hypervisors exploit temporal network information to migrate VMs and minimize the network-wide communication cost of the resulting traffic dynamics. A prototype implementation is presented and Mininet is used to evaluate the impact of diverse orchestration algorithms
Coulomb Drag Between Parallel Ballistic Quantum Wires
The Coulomb drag between parallel, {\it ballistic} quantum wires is studied
theoretically in the presence of a perpendicular magnetic field B. The
transresistance R_D shows peaks as a function of the Fermi level and splitting
energy between the 1D subbands of the wires. The sharpest peaks appear when the
Fermi level crosses the subband extrema so that the Fermi momenta are small.
Two other kinds of peaks appear when either {\it intra}- or {\it inter}-subband
transitions of electrons have maximum probability; the {\it intra}-subband
transitions correspond to a small splitting energy. R_D depends on the field B
in a nonmonotonic fashion: it decreases with B, as a result of the suppression
of backscattering, and increases sharply when the Fermi level approaches the
subband bottoms and the suppression is outbalanced by the increase of the
Coulomb matrix elements and of the density of states.Comment: Text 14 pages in Latex/Revtex format, 4 Postscript figures. Phys.
Rev. B,in pres
Negative Electron-electron Drag Between Narrow Quantum Hall Channels
Momentum transfer due to Coulomb interaction between two parallel,
two-dimensional, narrow, and spatially separated layers, when a current
I_{drive} is driven through one layer, is studied in the presence of a
perpendicular magnetic field B. The current induced in the drag layer,
I_{drag}, is evaluated self-consistently with I_{drive} as a parameter.
I_{drag} can be positive or negative depending on the value of the filling
factor \nu of the highest occupied bulk Landau level (LL). For a fully occupied
LL, I_{drag} is negative, i.e., it flows opposite to I_{drive}, whereas it is
positive for a half-filled LL. When the circuit is opened in the drag layer, a
voltage \Delta V_{drag} develops in it; it is negative for a half-filled LL and
positive for a fully occupied LL. This positive \Delta V_{drag}, expressing a
negative Coulomb drag, results from energetically favored near-edge inter-LL
transitions that occur when the highest occupied bulk LL and the LL just above
it become degenerate.Comment: Text file in Latex/Revtex/preprint format, 7 separate PS figures,
Physical Review B, in pres
Software fault-tolerance by design diversity DEDIX: A tool for experiments
The use of multiple versions of a computer program, independently designed from a common specification, to reduce the effects of an error is discussed. If these versions are designed by independent programming teams, it is expected that a fault in one version will not have the same behavior as any fault in the other versions. Since the errors in the output of the versions are different and uncorrelated, it is possible to run the versions concurrently, cross-check their results at prespecified points, and mask errors. A DEsign DIversity eXperiments (DEDIX) testbed was implemented to study the influence of common mode errors which can result in a failure of the entire system. The layered design of DEDIX and its decision algorithm are described
Frictional Coulomb drag in strong magnetic fields
A treatment of frictional Coulomb drag between two 2-dimensional electron
layers in a strong perpendicular magnetic field, within the independent
electron picture, is presented. Assuming fully resolved Landau levels, the
linear response theory expression for the transresistivity is
evaluated using diagrammatic techniques. The transresistivity is given by an
integral over energy and momentum transfer weighted by the product of the
screened interlayer interaction and the phase-space for scattering events. We
demonstrate, by a numerical analysis of the transresistivity, that for
well-resolved Landau levels the interplay between these two factors leads to
characteristic features in both the magnetic field- and the temperature
dependence of . Numerical results are compared with recent
experiments.Comment: RevTeX, 34 pages, 8 figures included in tex
Magneto-Coulomb drag: interplay of electron--electron interactions and Landau quantization
We use the Kubo formalism to calculate the transresistivity for
carriers in coupled quantum wells in a large perpendicular magnetic field .
We find that is enhanced by approximately 50--100 times over that
of the B=0 case in the interplateau regions of the integer quantum Hall effect.
The presence of both electron--electron interactions and Landau quantization
results in (i) a twin-peaked structure of in the inter-plateau
regions at low temperatures, and, (ii) for the chemical potential at the center
of a Landau level band, a peaked temperature dependence of .Comment: 4 pages, RevTeX, 4 PS figures in text using eps
Phonon mediated drag in double layer two dimensional electron systems
Experiments studying phonon mediated drag in the double layer two dimensional
electron gas system are reported. Detailed measurements of the dependence of
drag on temperature, layer spacing, density ratio, and matched density are
discussed. Comparisons are made to theoretical results [M. C. Bonsager et al.,
Phys. Rev. B 57, 7085 (1998)] which propose the existence of a new coupled
electron-phonon collective mode. The layer spacing and density dependence at
matched densities for samples with layer spacings below 2600 A do not support
the existence of this mode, showing behavior expected for independent electron
and phonon systems. The magnitude of the drag, however, suggests the alternate
limit; one in which electrons and phonons are strongly coupled. The results for
still larger layer spacing show significant discrepancies with the behavior
expected for either limit.Comment: 9 pages, 9 figures, Late
Frictional drag between quantum wells mediated by phonon exchange
We use the Kubo formalism to evaluate the contribution of acoustic phonon
exchange to the frictional drag between nearby two-dimensional electron
systems. In the case of free phonons, we find a divergent drag rate
(). However, becomes finite when phonon
scattering from either lattice imperfections or electronic excitations is
accounted for. In the case of GaAs quantum wells, we find that for a phonon
mean free path smaller than a critical value, imperfection
scattering dominates and the drag rate varies as over many
orders of magnitude of the layer separation . When exceeds the
critical value, the drag rate is dominated by coupling through an
electron-phonon collective mode localized in the vicinity of the electron
layers. We argue that the coupled electron-phonon mode may be observable for
realistic parameters. Our theory is in good agreement with experimental results
for the temperature, density, and -dependence of the drag rate.Comment: 45 pages, LaTeX, 8 postscript file figure
Coulomb Drag at the Onset of Anderson Insulators
It is shown that the Coulomb drag between two identical layers in the
Anderson insulting state indicates a striking difference between the Mott and
Efros-Shklovskii (ES) insulators. In the former, the trans-resistance
is monotonically increasing with the localization length ; in the latter,
the presence of a Coulomb gap leads to an opposite result: is enhanced
with a decreasing , with the same exponential factor as the single layer
resistivity. This distinction reflects the relatively pronounced role of
excited density fluctuations in the ES state, implied by the enhancement in the
rate of hopping processes at low frequencies. The magnitude of drag is
estimated for typical experimental parameters in the different cases. It is
concluded that a measurement of drag can be used to distinguish between
interacting and non-interacting insulating state.Comment: 15 pages, revte
Scaling Laws and Transient Times in 3He Induced Nuclear Fission
Fission excitation functions of compound nuclei in a mass region where shell
effects are expected to be very strong are shown to scale exactly according to
the transition state prediction once these shell effects are accounted for. The
fact that no deviations from the transition state method have been observed
within the experimentally investigated excitation energy regime allows one to
assign an upper limit for the transient time of 10 zs.Comment: 7 pages, TeX type, psfig, submitted to Phys. Rev. C, also available
at http://csa5.lbl.gov/moretto/ps/he3_paper.p
- …
