899 research outputs found

    Observability, Identifiability and Sensitivity of Vision-Aided Navigation

    Full text link
    We analyze the observability of motion estimates from the fusion of visual and inertial sensors. Because the model contains unknown parameters, such as sensor biases, the problem is usually cast as a mixed identification/filtering, and the resulting observability analysis provides a necessary condition for any algorithm to converge to a unique point estimate. Unfortunately, most models treat sensor bias rates as noise, independent of other states including biases themselves, an assumption that is patently violated in practice. When this assumption is lifted, the resulting model is not observable, and therefore past analyses cannot be used to conclude that the set of states that are indistinguishable from the measurements is a singleton. In other words, the resulting model is not observable. We therefore re-cast the analysis as one of sensitivity: Rather than attempting to prove that the indistinguishable set is a singleton, which is not the case, we derive bounds on its volume, as a function of characteristics of the input and its sufficient excitation. This provides an explicit characterization of the indistinguishable set that can be used for analysis and validation purposes

    Agreeing to Cross: How Drivers and Pedestrians Communicate

    Full text link
    The contribution of this paper is twofold. The first is a novel dataset for studying behaviors of traffic participants while crossing. Our dataset contains more than 650 samples of pedestrian behaviors in various street configurations and weather conditions. These examples were selected from approx. 240 hours of driving in the city, suburban and urban roads. The second contribution is an analysis of our data from the point of view of joint attention. We identify what types of non-verbal communication cues road users use at the point of crossing, their responses, and under what circumstances the crossing event takes place. It was found that in more than 90% of the cases pedestrians gaze at the approaching cars prior to crossing in non-signalized crosswalks. The crossing action, however, depends on additional factors such as time to collision (TTC), explicit driver's reaction or structure of the crosswalk.Comment: 6 pages, 6 figure

    Priming Neural Networks

    Full text link
    Visual priming is known to affect the human visual system to allow detection of scene elements, even those that may have been near unnoticeable before, such as the presence of camouflaged animals. This process has been shown to be an effect of top-down signaling in the visual system triggered by the said cue. In this paper, we propose a mechanism to mimic the process of priming in the context of object detection and segmentation. We view priming as having a modulatory, cue dependent effect on layers of features within a network. Our results show how such a process can be complementary to, and at times more effective than simple post-processing applied to the output of the network, notably so in cases where the object is hard to detect such as in severe noise. Moreover, we find the effects of priming are sometimes stronger when early visual layers are affected. Overall, our experiments confirm that top-down signals can go a long way in improving object detection and segmentation.Comment: fixed error in author nam
    corecore