280 research outputs found
Beneficial anti‐platelet and anti‐inflammatory properties of irish apple juice and cider bioactives
peer-reviewedSeveral bioactives from fruit juices and beverages like phenolics, nucleotides and polar
lipids (PL) have exhibited anti‐platelet cardio‐protective properties. However, apple juice and cider lipid bioactives have not been evaluated so far. The aim of this study was to investigate the an‐ ti‐platelet and anti‐inflammatory effects and structure activity relationships of Irish apple juice and Real Irish cider lipid bioactives against the platelet‐activating factor (PAF)‐ and adenosine di‐ phosphate (ADP)‐related thrombotic and inflammatory manifestations in human platelets. Total Lipids (TL) were extracted from low, moderate and high in tannins apple juices and from their de‐ rived‐through‐fermentation cider products, as well as from commercial apple juice and cider. These were separated into neutral lipids (NL) and PL, while all lipid extracts were further assessed for their ability to inhibit aggregation of human platelets induced by PAF and ADP. In all cases, PL exhibited the strongest anti‐platelet bioactivities and were further separated by high‐performance liquid chromatography (HPLC) analysis into PL subclasses/fractions that were also assessed for their antiplatelet potency. The PL from low in tannins apple juice exhibited the strongest an‐ tiplatelet effects against PAF and ADP, while PL from its fermented cider product were less active. Moreover, the phosphatidylcholines (PC) in apple juices and the phosphatidylethanolamines (PE) in apple ciders were the most bioactive HPLC‐derived PL subclasses against PAF‐induced platelet aggregation. Structural elucidation of the fatty acid composition by gas chromatography mass
spectra (GCMS) analysis showed that PL from all samples are rich in beneficial monounsaturated fatty acids (MUFA) and omega 3 (n‐3) polyunsaturated fatty acids (PUFA), providing a possible explanation for their strong anti‐platelet properties, while the favorable low levels of their ome‐ ga‐6/omega‐3 (n‐6/n‐3) PUFA ratio, especially for the bioactive PC and PE subclasses, further support an anti‐inflammatory cardio‐protective potency for these apple products. In conclusion, Irish apple juice and Real Irish cider were found to possess bioactive PL compounds with strong antiplatelet and anti‐inflammatory properties, while fermentation seems to be an important mod‐ ulating factor on their lipid content, structures and bioactivities. However, further studies are needed to evaluate these effects
Fish polar lipids retard atherosclerosis in rabbits by down-regulating PAF biosynthesis and up-regulating PAF catabolism
<p>Abstract</p> <p>Background</p> <p>Platelet activating factor (PAF) has been proposed as a key factor and initial trigger in atherosclerosis. Recently, a modulation of PAF metabolism by bioactive food constituents has been suggested. In this study we investigated the effect of fish polar lipid consumption on PAF metabolism.</p> <p>Results</p> <p>The specific activities of four PAF metabolic enzymes; in leukocytes, platelets and plasma, and PAF concentration; either in blood cells or plasma were determined. Samples were acquired at the beginning and at the end of a previously conducted study in male New Zealand white rabbits that were fed for 45 days with atherogenic diet supplemented (group-B, n = 6) or not (group-A, n = 6) with gilthead sea bream (<it>Sparus aurata</it>) polar lipids.</p> <p>The specific activity of PAF-Acetylhydrolase (PAF-AH); a catabolic enzyme of PAF, was decreased in rabbits' platelets of both A and B groups and in rabbits' leukocytes of group A (p < 0.05). On the other hand the specific activity of Lipoprotein-associated Phospholipase A2 (Lp-PLA2); the catabolic enzyme of PAF in plasma was increased in both A and B groups in both leukocytes and platelets (p < 0.05). PAF-cholinephosphotransferase (PAF-CPT); a biosynthetic enzyme of PAF showed increased specific activity only in rabbits' leukocytes of group A (p < 0.05). Neither of the two groups showed any change in Lyso-PAF-acetyltransferase (Lyso-PAF-AT) specific activity (p > 0.05). Free and bound PAF levels increased in group A while decreased in group B (p < 0.05).</p> <p>Conclusions</p> <p>Gilthead sea bream (<it>Sparus aurata</it>) polar lipids modulate PAF metabolism upon atherosclerotic conditions in rabbits leading to lower PAF levels and activity in blood of rabbits with reduced early atherosclerotic lesions compared to control group.</p
Structurally Diverse Metal Coordination Compounds, Bearing Imidodiphosphinate and Diphosphinoamine Ligands, as Potential Inhibitors of the Platelet Activating Factor
Metal complexes bearing dichalcogenated imidodiphosphinate [R2P(E)NP(E)R2′]− ligands (E = O, S, Se, Te), which act as (E,E) chelates, exhibit a remarkable variety of three-dimensional structures. A series of such complexes, namely, square-planar [Cu{(OPPh2)(OPPh2)N-O, O}2], tetrahedral [Zn{(EPPh2)(EPPh2)N-E,E}2], E = O, S, and octahedral [Ga{(OPPh2)(OPPh2)N-O,O}3], were tested as potential inhibitors of either the platelet activating factor (PAF)- or thrombin-induced aggregation in both washed rabbit platelets and rabbit platelet rich plasma. For comparison, square-planar [Ni{(Ph2P)2N-S-CHMePh-P, P}X2], X = Cl, Br, the corresponding metal salts of all complexes and the (OPPh2)(OPPh2)NH ligand were also investigated. Ga(O,O)3 showed the highest anti-PAF activity but did not inhibit the thrombin-related pathway, whereas Zn(S,S)2, with also a significant PAF inhibitory effect, exhibited the highest thrombin-related inhibition. Zn(O,O)2 and Cu(O,O)2 inhibited moderately both PAF and thrombin, being more effective towards PAF. This work shows that the PAF-inhibitory action depends on the structure of the complexes studied, with the bulkier Ga(O,O)3 being the most efficient and selective inhibitor
Hydroxyl-platelet-activating factor exists in blood of healthy volunteers and periodontal patients.
Periodontal diseases are localized chronic inflammatory conditions of the gingival and underlying bone and connective tissue. Platelet-activating factor (PAF), a potent inflammatory phospholipid mediator that has been previously detected in elevated levels in inflamed gingival tissues, in gingival crevicular fluid and in saliva, is implicated in periodontal disease. Our results from previous studies showed that the biologically active phospholipid detected in gingival crevicular fluid is a hydroxyl-PAF analogue. In this study, hydroxyl-PAF analogue was detected for the first time in human blood derived from patients with chronic periodontitis as well as from periodontally healthy volunteers. The hydroxyl-PAF analogue was purified by high-performance liquid chromatography, detected by biological assays and identified by electrospray analysis. In addition, the quantitative determination of PAF and hydroxyl-PAF analogue (expressed as PAF-like activity) showed a statistically significant increase in the ratio of hydroxyl-PAF analogue levels to PAF levels in periodontal patients, suggesting that this bioactive lipid may play a role in oral inflammation
Characterization of the De Novo Biosynthetic Enzyme of Platelet Activating Factor, DDT-Insensitive Cholinephosphotransferase, of Human Mesangial Cells
Platelet activating factor (PAF), a potent inflammatory mediator, is implicated in several proinflammatory/inflammatory diseases such as glomerulonephritis, glomerulosclerosis, atherosclerosis, cancer, allergy, and diabetes. PAF can be produced by several renal cells under appropriate stimuli and it is thought to be implicated in renal diseases. The aim of this study is the characterization of DTT-insensitive cholinephosphotransferase (PAF-CPT) of human mesangial cell (HMC), the main regulatory enzyme of PAF de novo biosynthetic pathway. Microsomal fractions of mesangial cells were isolated and enzymatic activity and kinetic parameters were determined by TLC and in vitro biological test in rabbit washed platelets. The effect of bovine serum albumin (BSA), dithiothreitol (DTT), divalent cations (Mg2+ and Ca2+), EDTA, and various chemicals on the activity of PAF-CPT of HMC was also studied. Moreover, preliminary in vitro tests have been performed with several anti-inflammatory factors such as drugs (simvastatin, IFNa, rupatadine, tinzaparin, and salicylic acid) and bioactive compounds of Mediterranean diet (resveratrol and lipids of olive oil, olive pomace, sea bass
“Dicentrarchus labrax,” and gilthead sea bream “Sparus aurata”). The results indicated that the above compounds can influence PAF-CPT activity of HMC
Enrichment of Whole-Grain Breads with Food-Grade Extracted Apple Pomace Bioactives Enhanced Their Anti-Inflammatory, Antithrombotic and Anti-Oxidant Functional Properties
Apple pomace (AP) is a bio-waste product of apples that is co-produced as a by-product during apples’ processing for making apple-based products, mainly apple juice, cider and vinegar. AP is a rich source of several bioactives that can be valorized as ingredients for developing novel functional foods, supplements and nutraceuticals. Within the present study, food-grade extracts from AP with different tannin contents were found to contain bioactive polar lipids (PLs), phenolics and carotenoids with strong anti-oxidant, antithrombotic and anti-inflammatory properties. The extract from the low-in-tannins AP showed stronger anti-inflammatory potency in human platelets against the potent thrombo-inflammatory mediator platelet-activating factor (PAF), while it also exhibited considerable anti-platelet effects against the standard platelet agonist, adenosine diphosphate (ADP). The infusion of 0.5–1.0 g of this bioactive AP extract as functional ingredients for whole-grain bread-making resulted in the production of novel bio-functional bread products with stronger anti-oxidant, antithrombotic and anti-inflammatory potency against both PAF and ADP in human platelets, compared to the standard non-infused control breads. Structural analysis by LCMS showed that the PL-bioactives from all these sources (AP and the bio-functional breads) are rich in bioactive unsaturated fatty acids (UFA), especially in the omega-9 oleic acid (OA; 18:1n9), the omega-3 alpha linolenic acid (ALA; 18:n3) and the omega-6 linoleic acid (LA; 18:2n6), which further supports their strong anti-inflammatory and antithrombotic properties. All food-grade extracted AP including that infused with AP-bioactives novel functional breads showed higher hydrophilic, lipophilic and total phenolic content, as well as total carotenoid content, and subsequently stronger antioxidant capacity. These results showed the potential of appropriately valorizing AP-extracts in developing novel bio-functional bakery products, as well as in other health-promoting applications. Nevertheless, more studies are needed to fully elucidate and/or validate the anti-inflammatory, antithrombotic and antioxidant potential of novel bio-functional products across the food and cosmetic sectors when infused with these AP bioactives. © 2024 by the authors.ye
Anti-inflammatory, antithrombotic and anti-oxidant bioactives of beer and brewery by-products, as ingredients of bio-functional foods, nutraceuticals, cosmetics, cosmeceuticals and pharmaceuticals with health promoting properties
Fermented alcoholic beverages and their by-products, including beer and breweries' bio-wastes like spent yeasts, grain, and hops, contain a plethora of natural bioactive compounds that have recently gained attention for their valorization as functional ingredients in several novel foods and nutraceuticals, as well as in drugs and cosmetics applications. Within this article, the natural bio-functional compounds of fermented beer product and breweries' by-products with anti-inflammatory, antithrombotic, and anti-oxidant bioactivities are thoroughly reviewed. The important roles of yeasts involved for such bioactives to be present in the fermented product and in the brewery bio-wastes are also outlined. The health promoting benefits of beer moderate consumption resulting from these bioactives, as part of a balanced diet, against inflammation-related chronic disorders is also discussed, along with the detrimental effects of beer consumption abuse and the potential benefits of alternative non-alcoholic beers. The mechanisms of action and synergism of the natural bioactives present in the fermented beer product and in breweries' by-products, with anti-inflammatory, anti-thrombotic, and antioxidant properties are also presented. Current research and future perspectives on valorizing bioactives of fermented beer and brewery by-products, such as spent yeasts, grain and hops in health-promoting functional foods, supplements, nutraceuticals cosmetics, cosmeceuticals, and pharmaceuticals are also thoroughly evaluated, while the limitations of their use are also discussed
Polar lipids modify Alzheimer’s Disease pathology by reducing astrocyte pro-inflammatory signaling through platelet-activating factor receptor (PTAFR) modulation
Background: Pro-inflammatory processes triggered by the accumulation of extracellular amyloid beta (Aβ) peptides are a well-described pathology in Alzheimer’s disease (AD). Activated astrocytes surrounding Aβ plaques contribute to inflammation by secreting proinflammatory factors. While astrocytes may phagocytize Aβ and contribute to Aβ clearance, reactive astrocytes may also increase Aβ production. Therefore, identifying factors that can attenuate astrocyte activation and neuroinflammation and how these factors influence pro-inflammatory pathways is important for developing therapeutic and preventive strategies in AD. Here, we identify the platelet-activating factor receptor (PTAFR) pathway as a key mediator of astrocyte activation. Intriguingly, several polar lipids (PLs) have exhibited anti inflammatory protective properties outside the central nervous system through their inhibitory effect on the PTAFR pathway. Thus, we additionally investigated whether different PLs also exert inhibitory effects on the PAF pathway in astrocytes and whether their presence influences astrocytic pro-inflammatory signalling and known AD pathologies in vitro.
Methods: PLs from salmon and yogurt were extracted using novel food-grade techniques and their fatty acid profile was determined using LC/MS. The effect of PLs on parameters such as astrocyte activation and generation of oxygen species (ROS) was assessed. Additionally, effects of the secretome of astrocytes treated with these polar lipids on aged neurons was measured.
Results: We show that PLs obtained from salmon and yogurt lower astrocyte activation, the generation of reactive oxygen species (ROS), and extracellular Aβ accumulation. Cell health of neurons exposed to the secretome of astrocytes treated with salmon-derived PLs and Aβ was less affected than those treated with astrocytes exposed to Aβ only.
Conclusion: Our results highlight a novel underlying mechanism, why consuming PL-rich foods such as fish and dairy may reduce the risk of developing dementia and associated disorders.ye
Using high resolution and dynamic reaction cell for the improvement of the sensitivity of direct silicon determination in uranium materials by inductively coupled plasma mass spectrometry
- …
