2,498 research outputs found
Plasma-initiated polymerization and its applications
Plasma initiated polymerization is discussed. Topics include: polymerization of a vinyl monomer, solid phase polymerization, and inorganic ring compound polymers
Timesaving Double-Grid Method for Real-Space Electronic-Structure Calculations
We present a simple and efficient technique in ab initio electronic-structure
calculation utilizing real-space double-grid with a high density of grid points
in the vicinity of nuclei. This technique promises to greatly reduce the
overhead for performing the integrals that involves non-local parts of
pseudopotentials, with keeping a high degree of accuracy. Our procedure gives
rise to no Pulay forces, unlike other real-space methods using adaptive
coordinates. Moreover, we demonstrate the potential power of the method by
calculating several properties of atoms and molecules.Comment: 4 pages, 5 figure
A systematic method for constructing time discretizations of integrable lattice systems: local equations of motion
We propose a new method for discretizing the time variable in integrable
lattice systems while maintaining the locality of the equations of motion. The
method is based on the zero-curvature (Lax pair) representation and the
lowest-order "conservation laws". In contrast to the pioneering work of
Ablowitz and Ladik, our method allows the auxiliary dependent variables
appearing in the stage of time discretization to be expressed locally in terms
of the original dependent variables. The time-discretized lattice systems have
the same set of conserved quantities and the same structures of the solutions
as the continuous-time lattice systems; only the time evolution of the
parameters in the solutions that correspond to the angle variables is
discretized. The effectiveness of our method is illustrated using examples such
as the Toda lattice, the Volterra lattice, the modified Volterra lattice, the
Ablowitz-Ladik lattice (an integrable semi-discrete nonlinear Schroedinger
system), and the lattice Heisenberg ferromagnet model. For the Volterra lattice
and modified Volterra lattice, we also present their ultradiscrete analogues.Comment: 61 pages; (v2)(v3) many minor correction
Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach
We present an approach to solid-state electronic-structure calculations based
on the finite-element method. In this method, the basis functions are strictly
local, piecewise polynomials. Because the basis is composed of polynomials, the
method is completely general and its convergence can be controlled
systematically. Because the basis functions are strictly local in real space,
the method allows for variable resolution in real space; produces sparse,
structured matrices, enabling the effective use of iterative solution methods;
and is well suited to parallel implementation. The method thus combines the
significant advantages of both real-space-grid and basis-oriented approaches
and so promises to be particularly well suited for large, accurate ab initio
calculations. We develop the theory of our approach in detail, discuss
advantages and disadvantages, and report initial results, including the first
fully three-dimensional electronic band structures calculated by the method.Comment: replacement: single spaced, included figures, added journal referenc
Multicomponent Bright Solitons in F = 2 Spinor Bose-Einstein Condensates
We study soliton solutions for the Gross--Pitaevskii equation of the spinor
Bose--Einstein condensates with hyperfine spin F=2 in one-dimension. Analyses
are made in two ways: by assuming single-mode amplitudes and by generalizing
Hirota's direct method for multi-components. We obtain one-solitons of
single-peak type in the ferromagnetic, polar and cyclic states, respectively.
Moreover, twin-peak type solitons both in the ferromagnetic and the polar state
are found.Comment: 15 pages, 8 figure
Integrable discretizations of derivative nonlinear Schroedinger equations
We propose integrable discretizations of derivative nonlinear Schroedinger
(DNLS) equations such as the Kaup-Newell equation, the Chen-Lee-Liu equation
and the Gerdjikov-Ivanov equation by constructing Lax pairs. The discrete DNLS
systems admit the reduction of complex conjugation between two dependent
variables and possess bi-Hamiltonian structure. Through transformations of
variables and reductions, we obtain novel integrable discretizations of the
nonlinear Schroedinger (NLS), modified KdV (mKdV), mixed NLS, matrix NLS,
matrix KdV, matrix mKdV, coupled NLS, coupled Hirota, coupled Sasa-Satsuma and
Burgers equations. We also discuss integrable discretizations of the
sine-Gordon equation, the massive Thirring model and their generalizations.Comment: 24 pages, LaTeX2e (IOP style), final versio
Sclerite formation in the hydrothermal-vent “scaly-foot” gastropod — possible control of iron sulfide biomineralization by the animal
A gastropod from a deep-sea hydrothermal field at the Rodriguez triple junction, Indian Ocean, has scale-shaped structures, called sclerites, mineralized with iron sulfides on its foot. No other organisms are known to produce a skeleton consisting of iron sulfides. To investigate whether iron sulfide mineralization is mediated by the gastropod for the function of the sclerites, we performed a detailed physical and chemical characterization. Nanostructural characterization of the iron sulfide sclerites reveals that the iron sulfide minerals pyrite (FeS2) and greigite (Fe3S4) form with unique crystal habits inside and outside of the organic matrix, respectively. The magnetic properties of the sclerites, which are mostly consistent with those predicted from their nanostructual features, are not optimized for magnetoreception and instead support use of the magnetic minerals as structural elements. The mechanical performance of the sclerites is superior to that of other biominerals used in the vent environment for predation as well as protection from predation. These characteristics, as well as the co-occurrence of brachyuran crabs, support the inference that the mineralization of iron sulfides might be controlled by the gastropod to harden the sclerites for protection from predators. Sulfur and iron isotopic analyses indicate that sulfur and iron in the sclerites originate from hydrothermal fluids rather than from bacterial metabolites, and that iron supply is unlikely to be regulated by the gastropod for iron sulfide mineralization. We propose that the gastropod may control iron sulfide mineralization by modulating the internal concentrations of reduced sulfur compounds
Reduction of myocardial infarction by postischemic administration of the calpain inhibitor A-705253 in comparison to the Na(+)/H(+) exchange inhibitor Cariporide (R) in isolated perfused rabbit hearts
The calpain inhibitor A-705253 and the Na(+)/H(+) exchange inhibitor Cariporide (R) were studied in isolated perfused rabbit hearts subjected to 60 min occlusion of the ramus interventricularis of the left coronary artery (below the origin of the first diagonal branch), followed by 120 min of reperfusion. The inhibitors were added to the perfusion fluid solely or in combination at the beginning of reperfusion. Hemodynamic monitoring and biochemical analysis of perfusion fluid from the coronary outflow were performed. Myocardial infarct size and area at risk (transiently not perfused myocardium) were determined from left ventricular slices after a special staining procedure with Evans blue and 2,3,5-triphenyltetrazolium chloride. The infarcted area (dead myocardium) was 72.7 +/- 4.0% of the area at risk in untreated controls, but was significantly smaller in the presence of the inhibitors. The largest effect was observed with 10(-6) M A-705253, which reduced the infarcted area to 49.2 +/- 4.1% of the area at risk, corresponding to a reduction of 33.6%. Cariporide (R) at 10(-6) M reduced the infarct size to the same extent. The combination of both inhibitors, however, did not further improve cardioprotection. No significant difference was observed between the experimental groups in coronary perfusion, left ventricular pressure, heart rate, or in the release of lactate dehydrogenase and creatine kinase from heart muscle
From AKNS to derivative NLS hierarchies via deformations of associative products
Using deformations of associative products, derivative nonlinear Schrodinger
(DNLS) hierarchies are recovered as AKNS-type hierarchies. Since the latter can
also be formulated as Gelfand-Dickey-type Lax hierarchies, a recently developed
method to obtain 'functional representations' can be applied. We actually
consider hierarchies with dependent variables in any (possibly noncommutative)
associative algebra, e.g., an algebra of matrices of functions. This also
covers the case of hierarchies of coupled DNLS equations.Comment: 22 pages, 2nd version: title changed and material organized in a
different way, 3rd version: introduction and first part of section 2
rewritten, taking account of previously overlooked references. To appear in
J. Physics A: Math. Ge
- …
