7,991 research outputs found

    Analytical investigation of magnetic field distributions around superconducting strips on ferromagnetic substrates

    Full text link
    The complex-field approach is developed to derive analytical expressions of the magnetic field distributions around superconducting strips on ferromagnetic substrates (SC/FM strips). We consider the ferromagnetic substrates as ideal soft magnets with an infinite magnetic permeability, neglecting the ferromagnetic hysteresis. On the basis of the critical state model for a superconducting strip, the ac susceptibility χ1+iχ1\chi_1'+i\chi_1'' of a SC/FM strip exposed to a perpendicular ac magnetic field is theoretically investigated, and the results are compared with those for superconducting strips on nonmagnetic substrates (SC/NM strips). The real part χ1\chi_1' for H0/jcds0H_0/j_cd_s\to 0 (where H0H_0 is the amplitude of the ac magnetic field, jcj_c is the critical current density, and dsd_s is the thickness of the superconducting strip) of a SC/FM strip is 3/4 of that of a SC/NM strip. The imaginary part χ1\chi_1'' (or ac loss QQ) for H0/jcds<0.14H_0/j_cd_s<0.14 of a SC/FM strip is larger than that of a SC/NM strip, even when the ferromagnetic hysteresis is neglected, and this enhancement of χ1\chi_1'' (or QQ) is due to the edge effect of the ferromagnetic substrate.Comment: 8 pages, 6 figures, submitted to Phys. Rev.

    Uniqueness of static spherically symmetric vacuum solutions in the IR limit of Ho\v{r}ava-Lifshitz gravity

    Full text link
    We investigate static spherically symmetric vacuum solutions in the IR limit of projectable nonrelativistic quantum gravity, including the renormalisable quantum gravity recently proposed by Ho\v{r}ava. It is found that the projectability condition plays an important role. Without the cosmological constant, the spacetime is uniquely given by the Schwarzschild solution. With the cosmological constant, the spacetime is uniquely given by the Kottler (Schwarzschild-(anti) de Sitter) solution for the entirely vacuum spacetime. However, in addition to the Kottler solution, the static spherical and hyperbolic universes are uniquely admissible for the locally empty region, for the positive and negative cosmological constants, respectively, if its nonvanishing contribution to the global Hamiltonian constraint can be compensated by that from the nonempty or nonstatic region. This implies that static spherically symmetric entirely vacuum solutions would not admit the freedom to reproduce the observed flat rotation curves of galaxies. On the other hand, the result for locally empty regions implies that the IR limit of nonrelativistic quantum gravity theories does not simply recover general relativity but includes it.Comment: 10 pages, accepted for publication in International Journal of Modern Physics

    Quantum Monte Carlo simulation of S=1/2 Heisenberg model with four spin interaction

    Get PDF
    25th International Conference on Low Temperature Physics (LT25)The spin S = 1/2 Heisenberg model with four-spin interaction on the square lattice is studied by using quantum Monte Carlo method. When the four-spin interaction is dominant, the system has a VBS ground state. In this case, we find a finite-temperature second-order phase transition to the VBS state. The universality class of the transition is investigated. We estimate the critical exponents ν and η from the finite size scaling analysis and find ν = 0.68(1) and η = 0.55(2)

    The \u3cem\u3edapE\u3c/em\u3e-encoded \u3cem\u3eN\u3c/em\u3e-Succinyl-l,l-Diaminopimelic Acid Desuccinylase from \u3cem\u3eHaemophilus influenzae\u3c/em\u3e Is a Dinuclear Metallohydrolase

    Get PDF
    The Zn K-edge extended X-ray absorption fine structure (EXAFS) spectra, of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae have been recorded in the presence of one or two equivalents of Zn(II) (i.e. [Zn_(DapE)] and [ZnZn(DapE)]). The Fourier transforms of the Zn EXAFS are dominated by a peak at ca. 2.0 Å, which can be fit for both [Zn_(DapE)] and [ZnZn(DapE)], assuming ca. 5 (N,O) scatterers at 1.96 and 1.98 Å, respectively. A second-shell feature at ca. 3.34 Å appears in the [ZnZn(DapE)] EXAFS spectrum but is significantly diminished in [Zn_(DapE)]. These data show that DapE contains a dinuclear Zn(II) active site. Since no X-ray crystallographic data are available for any DapE enzyme, these data provide the first glimpse at the active site of DapE enzymes. In addition, the EXAFS data for DapE incubated with two competitive inhibitors, 2-carboxyethylphosphonic acid and 5-mercaptopentanoic acid, are also presented

    Can we distinguish between black holes and wormholes by their Einstein-ring systems?

    Full text link
    For the last decade, the gravitational lensing in the strong gravitational field has been studied eagerly. It is well known that, for the lensing by a black hole, infinite number of Einstein rings are formed by the light rays which wind around the black hole nearly on the photon sphere, which are called relativistic Einstein rings. This is also the case for the lensing by a wormhole. In this paper, we study the Einstein ring and relativistic Einstein rings for the Schwarzschild black hole and the Ellis wormhole, the latter of which is an example of traversable wormholes of the Morris-Thorne class. Given the configuration of the gravitational lensing and the radii of the Einstein ring and relativistic Einstein rings, we can distinguish between a black hole and a wormhole in principle. We conclude that we can detect the relativistic Einstein rings by wormholes which have the radii of the throat a0.5a\simeq 0.5pc at a galactic center with the distance 10Mpc and which have a10a\simeq 10AU in our galaxy using by the most powerful modern instruments which have the resolution of 10210^{-2}arcsecond such as a 10-meter optical-infrared telescope. The black holes which make the Einstein rings of the same size as the ones by the wormholes are galactic supermassive black holes and the relativistic Einstein rings by the black holes are too small to measure at this moment. We may test some hypotheses of astrophysical wormholes by using the Einstein ring and relativistic Einstein rings in the future.Comment: 13 pages, 2 figures, minor changes from v

    High Field Anomalies of Equilibrium and Ultrafast Magnetism in Rare-Earth-Transition Metal Ferrimagnets

    Full text link
    Magneto-optical spectroscopy in fields up to 30 Tesla reveals anomalies in the equilibrium and ultrafast magnetic properties of the ferrimagnetic rare-earth-transition metal alloy TbFeCo. In particular, in the vicinity of the magnetization compensation temperature, each of the magnetizations of the antiferromagnetically coupled Tb and FeCo sublattices show triple hysteresis loops. Contrary to state-of-the-art theory, which explains such loops by sample inhomogeneities, here we show that they are an intrinsic property of the rare-earth ferrimagnets. Assuming that the rare-earth ions are paramagnetic and have a non-zero orbital momentum in the ground state and, therefore, a large magnetic anisotropy, we are able to reproduce the experimentally observed behavior in equilibrium. The same theory is also able to describe the experimentally observed critical slowdown of the spin dynamics in the vicinity of the magnetization compensation temperature, emphasizing the role played by the orbital momentum in static and ultrafast magnetism of ferrimagnets

    The spin-incoherent Luttinger liquid

    Get PDF
    In contrast to the well known Fermi liquid theory of three dimensions, interacting one-dimensional and quasi one-dimensional systems of fermions are described at low energy by an effective theory known as Luttinger liquid theory. This theory is expressed in terms of collective many-body excitations that show exotic behavior such as spin-charge separation. Luttinger liquid theory is commonly applied on the premise that "low energy" describes both the spin and charge sectors. However, when the interactions in the system are very strong, as they typically are at low particle densities, the ratio of spin to charge energy may become exponentially small. It is then possible at very low temperatures for the energy to be low compared to the characteristic charge energy, but still high compared to the characteristic spin energy. This energy window of near ground-state charge degrees of freedom, but highly thermally excited spin degrees of freedom is called a spin-incoherent Luttinger liquid. The spin-incoherent Luttinger liquid exhibits a higher degree universality than the Luttinger liquid and its properties are qualitatively distinct. In this colloquium I detail some of the recent theoretical developments in the field and describe experimental indications of such a regime in gated semiconductor quantum wires.Comment: 21 pages, 18 figures. Updated references, corrected typo in Eq.(20) in journal versio

    Rescue with an anti-inflammatory peptide of chickens infected H5N1 avian flu

    Get PDF
    Chickens suffering from avian flu caused by H5N1 influenza virus are destined to die within 2 days due to a systemic inflammatory response. Since HVJ infection (1,2) and influenza virus infection (3,4) cause infected cells to activate homologous serum complement, the systemic inflammatory response elicited could be attributed to the unlimited generation of C5a anaphylatoxin of the complement system, which is a causative peptide of serious inflammation. In monkeys inoculated with a lethal dose of LPS (4 mg/kg body weight), inhibition of C5a by an inhibitory peptide termed AcPepA (5) rescued these animals from serious septic shock which would have resulted in death within a day (6). Therefore, we tested whether AcPepA could also have a beneficial effect on chickens with bird flu. On another front, enhanced production of endothelin-1 (ET-1) and the activation of mast cells (MCs) have been implicated in granulocyte sequestration (7). An endothelin receptor derived antisense homology box peptide (8) designated ETR-P1/fl was shown to antagonize endothelin A receptor (ET-A receptor) (9) and reduce such inflammatory responses as endotoxin-shock (10) and hemorrhagic shock (11), thereby suppressing histamine release in the circulation (12). Thus, we also administered ETR-P1/fl to bird flu chickens expecting suppression of a systemic inflammatory response
    corecore