96 research outputs found

    Anomalous response to gate voltage application in mesoscopic LaAlO_3/SrTiO_3 devices

    Full text link
    We report on resistivity and Hall measurements performed on a series of narrow mesa devices fabricated from LaAlO_3/SrTiO_3 single interface heterostructure with a bridge width range of 1.5-10 microns. Upon applying back-gate voltage of the order of a few Volts, a strong increase in the sample resistance (up to factor of 35) is observed, suggesting a relatively large capacitance between the Hall-bar and the gate. The high value of this capacitance is due to the device geometry, and can be explained within an electrostatic model using the Thomas Fermi approximation. The Hall coefficient is sometimes a non-monotonic function of the gate voltage. This behavior is inconsistent with a single conduction band model. We show that a theoretical two-band model is consistent with this transport behavior, and indicates a metal to insulator transition in at least one of these bands.Comment: 5 pages, 4 figure

    The Poleward Transport of Moisture and Clouds in the Antarctic

    Get PDF
    第6回極域科学シンポジウム[OM] 極域気水圏11月16日(月) 統計数理研究所 セミナー室2(D304

    Phase coherent transport in SrTiO3/LaAlO3 interfaces

    Full text link
    The two dimensional electron gas formed between the two band insulators SrTiO3 and LaAlO3 exhibits a variety of interesting physical properties which make it an appealing material for use in future spintronics and/or quantum computing devices. For this kind of applications electrons have to retain their phase memory for sufficiently long times or length. Using a mesoscopic size device we were able to extract the phase coherence length, and its temperature variation. We find the dephasing rate to have a power law dependence on temperature. The power depends on the temperature range studied and sheet resistance as expected from dephasing due to strong electron-electron interactions.Comment: Submitted to Phys. Rev

    Luttinger liquid behavior in weakly disordered quantum wires

    Full text link
    We have measured the temperature dependence of the conductance in long V-groove quantum wires (QWRs) fabricated in GaAs/AlGaAs heterostructures. Our data is consistent with recent theories developed within the framework of the Luttinger liquid model, in the limit of weakly disordered wires. We show that for the relatively small amount of disorder in our QWRs, the value of the interaction parameter g is g=0.66, which is the expected value for GaAs. However, samples with a higher level of disorder show conductance with stronger temperature dependence, which does not allow their treatment in the framework of perturbation theory. Trying to fit such data with perturbation-theory models leads inevitably to wrong (lower) values of g.Comment: 4 pages, 4 figure

    Critical current in Nb-Cu-Nb junctions with non-ideal interfaces

    Full text link
    We report on experimental studies of superconductor (Nb) - normal metal (Cu) - superconductor (Nb) junctions with dirty interfaces between the different materials. By using a set of simultaneously prepared samples, we investigated the thickness dependence as well as the temperature dependence of the critical currents in the junctions. Good agreement between the decay of the measured critical currents and theoretical calculations was obtained without any fitting parameters

    Oscillations of the superconducting critical current in Nb-Cu-Ni-Cu-Nb junctions

    Full text link
    We report on experimental studies of superconductor-ferromagnet layered structures. Strong oscillations of the critical supercurrent were observed with the thickness variation of the ferromagnet. Using known microscopic parameters of Ni, we found reasonable agreement between the period of oscillations and the decay of the measured critical current, and theoretical calculations.Comment: 5 page

    Proximity effect in granular superconductor-normal metal structures

    Full text link
    We fabricated three-dimensional disordered Pb-Cu granular structures, with various metal compositions. The typical grain size of both metals is smaller than the superconductor and normal metal coherence lengths, thus satisfying the Cooper limit. The critical temperature of the samples was measured and compared with the critical temperature of bilayers. We show how the proximity effect theories, developed for bilayers, can be modified for random mixtures and we demonstrate that our experimental data fit well the de Gennes weak coupling limit theory in the Cooper limit. Our results indicate that, in granular structures, the Cooper limit can be satisfied over a wide range of concentrations.Comment: 15 pages, 4 figure

    Material condition assessment with eddy current sensors

    Get PDF
    Eddy current sensors and sensor arrays are used for process quality and material condition assessment of conducting materials. In an embodiment, changes in spatially registered high resolution images taken before and after cold work processing reflect the quality of the process, such as intensity and coverage. These images also permit the suppression or removal of local outlier variations. Anisotropy in a material property, such as magnetic permeability or electrical conductivity, can be intentionally introduced and used to assess material condition resulting from an operation, such as a cold work or heat treatment. The anisotropy is determined by sensors that provide directional property measurements. The sensor directionality arises from constructs that use a linear conducting drive segment to impose the magnetic field in a test material. Maintaining the orientation of this drive segment, and associated sense elements, relative to a material edge provides enhanced sensitivity for crack detection at edges
    corecore