241 research outputs found

    Mass balance and latest fluxes of radiocesium derived from the fukushima accident in the western North Pacific Ocean and coastal regions of Japan

    Get PDF
    This article summarizes and discusses mass balance calculations of the activities of Fukushima-derived 137Cs released to the atmosphere and ocean prior to 2018 as well as the 137Cs inventories on land and in the ocean, biota, and sediment. We propose that the consensus value of the total amount of 137Cs released to the atmosphere was 15–21 PBq; atmospheric deposition of 137Cs on land was 3–6 PBq; atmospheric deposition of 137Cs on the North Pacific was 12–15 PBq; and direct discharge of 137Cs to the ocean was 3–6 PBq. We also evaluated the movement of 137Cs from one domain to another for several years after the accident. We calculated that the amount of 137Cs transported by rivers might be 40 TBq. The annual deposition of 137Cs due to resuspension at Okuma during the period 2014–2018 was 4–10 TBq year−1. The 137Cs discharged to the ocean was 0.73–1.0 TBq year−1 in 2016–2018. The integrated amount of FNPP1-derived 137Cs that entered the Sea of Japan from the Pacific Ocean from 2011 until 2017 was 270 ± 20 TBq, 6.4% of the estimated amount of FNPP1-derived 137Cs in Subtropical Mode Water in the North Pacific. The integrated amount of FNPP1-derived 137Cs that returned to the North Pacific Ocean through the Tsugaru Strait from the Sea of Japan was 110 ± 10 TBq. Decontamination efforts removed 134 TBq of 137Cs from surface soil prior to February 2019, an amount that corresponded to 4% of the137Cs deposited on land in Japan

    Reconstruction of radiocesium levels in sediment off Fukushima: Simulation analysis of bioavailability using parameters derived from observed 137Cs concentrations

    Get PDF
    Radiocesium was released to the North Pacific coastal waters by the accident at the Fukushima Dai-ichi Nuclear Power Plant (1FNPP) of the Tokyo Electric Power Company (TEPCO) in March 2011. Since the radiocesium in the sediment off Fukushima was suggested as a possible source for the transfer of this radionuclide through the benthic food chain, we conducted numerical simulations of 137Cs in sediments off the Fukushima coast by using a model which incorporates dynamic transfer processes between seawater and the labile and refractory fractions in sediment particles. This model reproduced the measured temporal changes of 137Cs concentration in seabed surface sediment off Fukusima coasts, by normalizing the radiocsium transfer between seawater and sediment according to the particle diameter sizes. We found that the 137Cs level in sediment decreased by desorption during the first several months after the accident, followed by a reduction in the labile fraction until the end of 2012. The apparent decrease of the total radiocesium level in surface sediment was estimated to occur at rates of approximately 0.2 y−1 within a 20 km distance from the 1FNPP. The comparison of 137Cs level decreases in the demersal fish and the simulated temporal labile fraction in fine sediment demonstrated that the consideration of radiocesium transfer via sediment is important for determining the 137Cs depuration mechanism in some demersal fish

    Impacts of direct release and river discharge on oceanic 137Cs derived from the Fukushima Dai-ichi Nuclear Power Plant accident

    Get PDF
    A series of accidents at the Fukushima Dai-ichi Nuclear Power Plant (1F NPP) following the Great East Japan Earthquake and tsunami of 11 March 2011 resulted in the release of radioactive materials to the ocean. We used the Regional Ocean Model System (ROMS) to simulate the 137Cs activity in the oceanic area off Fukushima, with the sources of radioactivity being direct release, atmospheric deposition, river discharge, and inflow across the domain boundary. The direct release rate of 137Cs after the accident until the end of 2016 was estimated by comparing simulated results with measured 137Cs activities adjacent to the 1F NPP. River discharge rates of 137Cs were estimated by multiplying simulated river flow rates by the dissolved 137Cs activities, which were estimated by an empirical function. Inflow of 137Cs across the domain boundary was set according to the results of a North Pacific Ocean model. Because the spatiotemporal variability of 137Cs activity was large, the simulated results were compared with the annual averaged observed 137Cs activity distribution. Normalized annual averaged 137Cs activity distributions in the regional ocean were similar for each year from 2013 to 2016. This result suggests that the annual averaged distribution is predictable. Simulated 137Cs activity attributable to direct release was in good agreement with measurement data from the coastal zone adjacent to the 1F NPP. Comparison of the simulated results with measured activity in the offshore area indicated that the simulation slightly underestimated the activity attributable to inflow across the domain boundary. This result suggests that recirculation of subducted 137Cs to the surface layer was underestimated by the North Pacific model. During the study period, the effect of river discharge on oceanic 137Cs activity was small compared to the effect of directly released 137Cs

    Ocean chlorofluorocarbon and heat uptake during the twentieth century in the CCSM3

    Get PDF
    Author Posting. © American Meteorological Society 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 19 (2006): 2366–2381, doi:10.1175/JCLI3758.1.An ensemble of nine simulations for the climate of the twentieth century has been run using the Community Climate System Model version 3 (CCSM3). Three of these runs also simulate the uptake of chlorofluorocarbon-11 (CFC-11) into the ocean using the protocol from the Ocean Carbon Model Intercomparison Project (OCMIP). Comparison with ocean observations taken between 1980 and 2000 shows that the global CFC-11 uptake is simulated very well. However, there are regional biases, and these are used to identify where too much deep-water formation is occurring in the CCSM3. The differences between the three runs simulating CFC-11 uptake are also briefly documented. The variability in ocean heat content in the 1870 control runs is shown to be only a little smaller than estimates using ocean observations. The ocean heat uptake between 1957 and 1996 in the ensemble is compared to the recent observational estimates of the secular trend. The trend in ocean heat uptake is considerably larger than the natural variability in the 1870 control runs. The heat uptake down to 300 m between 1957 and 1996 varies by a factor of 2 across the ensemble. Some possible reasons for this large spread are discussed. There is much less spread in the heat uptake down to 3 km. On average, the CCSM3 twentieth-century ensemble runs take up 25% more heat than the recent estimate from ocean observations. Possible explanations for this are that the model heat uptake is calculated over the whole ocean, and not just in the regions where there are many observations and that there is no parameterization of the indirect effects of aerosols in CCSM3.Support provided by the National Science Foundation, the Department of Energy, the Ministry of Education, Culture, Sports, Science and Technology, and the Earth Simulator Center of the Japan Agency for Marine- Earth Science and Technology

    Mechanisms controlling dissolved iron distribution in the North Pacific : a model study

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): G03005, doi:10.1029/2010JG001541.Mechanisms controlling the dissolved iron distribution in the North Pacific are investigated using the Biogeochemical Elemental Cycling (BEC) model with a resolution of approximately 1° in latitude and longitude and 60 vertical levels. The model is able to reproduce the general distribution of iron as revealed in available field data: surface concentrations are generally below 0.2 nM; concentrations increase with depth; and values in the lower pycnocline are especially high in the northwestern Pacific and off the coast of California. Sensitivity experiments changing scavenging regimes and external iron sources indicate that lateral transport of sedimentary iron from continental margins into the open ocean causes the high concentrations in these regions. This offshore penetration only appears under a scavenging regime where iron has a relatively long residence time at high concentrations, namely, the order of years. Sedimentary iron is intensively supplied around continental margins, resulting in locally high concentrations; the residence time with respect to scavenging determines the horizontal scale of elevated iron concentrations. Budget analysis for iron reveals the processes by which sedimentary iron is transported to the open ocean. Horizontal mixing transports sedimentary iron from the boundary into alongshore currents, which then carry high iron concentrations into the open ocean in regions where the alongshore currents separate from the coast, most prominently in the northwestern Pacific and off of California.This work was supported by the U.S. National Science Foundation (EF‐0424599)
    corecore