512 research outputs found

    Modulating the Properties of Azulene‐Containing Polymers through Controlled Incorporation of Regioisomers

    Get PDF
    Two libraries of random conjugated polymers are presented that incorporate varying ratios of regioisomeric azulene units connected via the 5‐membered or 7‐membered ring in combination with bithiophene or fluorene comonomers. It is demonstrated that the optoelectronic and stimuli‐responsive properties of the materials can be systematically modulated by tuning the relative percentage of each azulene building block in the polymer backbone. Significantly, these materials exhibit stimuli‐responsive behavior in the solid state with spin‐coated thin films undergoing rapid and reversible color switching. Ultimately, this work introduces a new design strategy in which the optoelectronic properties of conjugated polymers can be modulated by varying only the regiochemistry of the constituent building blocks along a polymer chain

    Correlation regimes in fluctuations of fatigue crack growth

    Full text link
    This paper investigates correlation properties of fluctuations in fatigue crack growth of polycrystalline materials, such as ductile alloys, that are commonly encountered in structures and machinery components of complex electromechanical systems. The model of crack damage measure indicates that the fluctuations of fatigue crack growth are characterized by strong correlation patterns within short time scales and are uncorrelated for larger time scales. The two correlation regimes suggest that the 7075-T6 aluminum alloy, analyzed in this paper, is characterized by a micro-structure which is responsible for an intermittent correlated dynamics of fatigue crack growth within a certain scale. The constitutive equations of the damage measure are built upon the physics of fracture mechanics and are substantiated by Karhunen-Lo\`{e}ve decomposition of fatigue test data. Statistical orthogonality of the estimated damage measure and the resulting estimation error is demonstrated in a Hilbert space setting.Comment: 30 pages, 8 figures, to appear in Physica

    Phonon confinement and self-limiting oxidation effect of silicon nanowires synthesized by laser ablation

    Get PDF
    The phonon confinement and self-limiting oxidation effects of silicon nanowires (SiNWs) synthesized by laser ablation were investigated. The size of SiNWs was controlled by the synthesis parameters during laser ablation and the subsequent thermal oxidation. Thermal oxidation increases the thickness of the SiNWs\u27 surface oxide layer, resulting in a decrease in their crystalline Si core diameter. This effect causes a downshift and asymmetric broadening of the Si optical phonon peak due to phonon confinement, while excess oxidation causes an upshift due to compressive stress. The compressive stress retarded the oxidation of the SiNWs by self-limiting oxidation effect. This result shows that the Si core diameter can be controlled by compressive stress

    Phosphorus doping and hydrogen passivation of donors and defects in silicon nanowires synthesized by laser ablation

    Get PDF
    Phosphorus (P) doping was performed during the synthesis of silicon nanowires (SiNWs) by laser ablation. At least three types of signals were observed by electron spin resonance (ESR) at 4.2 K. Phosphorus doping into substitutional sites of crystalline Si in SiNWs was demonstrated by the detection of an ESR signal with a g value of 1.998, which corresponds to conduction electrons in crystalline Si, and by an energy-dispersive x-ray spectroscopy spectrum of the P Kalpha line. The ESR results also revealed the presence of defects. These defects were partially passivated by hydrogen and oxygen atoms

    Discrete instability in nonlinear lattices

    Full text link
    The discrete multiscale analysis for boundary value problems in nonlinear discrete systems leads to a first order discrete modulational instability above a threshold amplitude for wave numbers beyond the zero of group velocity dispersion. Applied to the electrical lattice [Phys. Rev. E, 51 (1995) 6127 ], this acurately explains the experimental instability at wave numbers beyond 1.25 . The theory is also briefly discussed for sine-Gordon and Toda lattices.Comment: 1 figure, revtex, published: Phys. Rev. Lett. 83 (1999) 232

    Nonlinear Modulation of Multi-Dimensional Lattice Waves

    Full text link
    The equations governing weakly nonlinear modulations of NN-dimensional lattices are considered using a quasi-discrete multiple-scale approach. It is found that the evolution of a short wave packet for a lattice system with cubic and quartic interatomic potentials is governed by generalized Davey-Stewartson (GDS) equations, which include mean motion induced by the oscillatory wave packet through cubic interatomic interaction. The GDS equations derived here are more general than those known in the theory of water waves because of the anisotropy inherent in lattices. Generalized Kadomtsev-Petviashvili equations describing the evolution of long wavelength acoustic modes in two and three dimensional lattices are also presented. Then the modulational instability of a NN-dimensional Stokes lattice wave is discussed based on the NN-dimensional GDS equations obtained. Finally, the one- and two-soliton solutions of two-dimensional GDS equations are provided by means of Hirota's bilinear transformation method.Comment: Submitted to PR

    Asymmetric gap soliton modes in diatomic lattices with cubic and quartic nonlinearity

    Full text link
    Nonlinear localized excitations in one-dimensional diatomic lattices with cubic and quartic nonlinearity are considered analytically by a quasi-discreteness approach. The criteria for the occurence of asymmetric gap solitons (with vibrating frequency lying in the gap of phonon bands) and small-amplitude, asymmetric intrinsic localized modes (with the vibrating frequency being above all the phonon bands) are obtained explicitly based on the modulational instabilities of corresponding linear lattice plane waves. The expressions of particle displacement for all these nonlinear localized excitations are also given. The result is applied to standard two-body potentials of the Toda, Born-Mayer-Coulomb, Lennard-Jones, and Morse type. The comparison with previous numerical study of the anharmonic gap modes in diatomic lattices for the standard two-body potentials is made and good agreement is found.Comment: 24 pages in Revtex, 2 PS figure
    corecore