474 research outputs found

    Atmospheric number size distributions of soot particles and estimation of emission factors

    Get PDF
    International audienceNumber fractions of externally mixed particles of four different sizes (30, 50, 80, and 150 nm in diameter) were measured using a Volatility Tandem DMA. The system was operated in a street canyon (Eisenbahnstrasse, EI) and at an urban background site (Institute for Tropospheric Research, IfT), both in the city of Leipzig, Germany as well as at a rural site (Melpitz (ME), a village near Leipzig). Intensive campaigns of 3?5 weeks each took place in summer 2003 as well as in winter 2003/2004. The data set thus obtained provides mean number fractions of externally mixed soot particles of atmospheric aerosols in differently polluted areas and different seasons (e.g. at 80 nm on working days, 60% (EI), 22% (IfT), and 6% (ME) in summer and 26% (IfT), and 13% (ME) in winter). Furthermore, a new method is used to calculate the size distribution of these externally mixed soot particles from parallel number size distribution measurements. A decrease of the externally mixed soot fraction with decreasing urbanity and a diurnal variation linked to the daily traffic changes demonstrate, that the traffic emissions have a significant impact on the soot fraction in urban areas. This influence becomes less in rural areas, due to atmospheric mixing and transformation processes. For estimating the source strength of soot particles emitted by vehicles (veh), soot particle emission factors were calculated using the Operational Street Pollution Model (OSPM). The emission factor for an average vehicle was found to be (1.5±0.4)·1014 #/(km·veh). The separation of the emission factor into passenger cars ((5.8±2)·1013 #/(km·veh)) and trucks ((2.5±0.9)·1015 #/(km·veh)) yielded in a 40-times higher emission factor for trucks compared to passenger cars

    Finsler geometry on higher order tensor fields and applications to high angular resolution diffusion imaging.

    Get PDF
    We study 3D-multidirectional images, using Finsler geometry. The application considered here is in medical image analysis, specifically in High Angular Resolution Diffusion Imaging (HARDI) (Tuch et al. in Magn. Reson. Med. 48(6):1358–1372, 2004) of the brain. The goal is to reveal the architecture of the neural fibers in brain white matter. To the variety of existing techniques, we wish to add novel approaches that exploit differential geometry and tensor calculus. In Diffusion Tensor Imaging (DTI), the diffusion of water is modeled by a symmetric positive definite second order tensor, leading naturally to a Riemannian geometric framework. A limitation is that it is based on the assumption that there exists a single dominant direction of fibers restricting the thermal motion of water molecules. Using HARDI data and higher order tensor models, we can extract multiple relevant directions, and Finsler geometry provides the natural geometric generalization appropriate for multi-fiber analysis. In this paper we provide an exact criterion to determine whether a spherical function satisfies the strong convexity criterion essential for a Finsler norm. We also show a novel fiber tracking method in Finsler setting. Our model incorporates a scale parameter, which can be beneficial in view of the noisy nature of the data. We demonstrate our methods on analytic as well as simulated and real HARDI data

    An episode of extremely high PM concentrations over Central Europe caused by dust emitted over the southern Ukraine

    No full text
    International audienceOn 24 March 2007, the atmosphere over Central Europe was affected by an episode of exceptionally high mass concentrations of aerosol particles, most likely caused by a dust storm in the Southern Ukraine on the preceding day. At ground-based measurement stations in Slovakia, the Czech Republic, Poland and Germany PM10 mass concentrations rose to values between 200 and 1400 ?g m?3. An evaluation of PM10 measurements from 360 monitoring stations showed that the dust cloud advanced along a narrow corridor at speeds of up to 70 km h?1. According to lidar observations over Leipzig, Germany, the high aerosol concentrations were confined to a homogeneous boundary layer of 1800 m height. The wavelength dependence of light extinction using both lidar and sun photometer measurements suggested the dominance of coarse particles during the main event. At a wavelength of 532 nm, relatively high volume extinction coefficients (300?400 Mm?1) and a particle optical depth of 0.65 was observed. In-situ measurements with an aerodynamic particle sizer at Melpitz, Germany, confirmed the presence of a coarse particle mode with a mode diameter >2 ?m, whose maximum concentration coincided with that of PM10. A chemical particle analysis confirmed the dominance of non-volatile and insoluble matter in the coarse mode as well as high enrichments of Ti and Fe, which are characteristic of soil dust. A combination of back trajectory calculations and satellite images allowed to identify the dust source with confidence: On 23 March 2007, large amounts of dust were emitted from dried-out farmlands in the southern Ukraine, facilitated by wind gusts up to 100 km h?1. The unusual vertical stability and confined height of this dust layer as well as the rapid transport under dry conditions led to the conservation of high aerosol mass concentrations along the transect and thus to the extraordinary high aerosol concentrations over Central Europe. Our observations demonstrate the capacity of a combined apparatus of in situ and remote sensing measurements to characterise such a dust with a variety of aerosol parameters. As a conclusion, the description of dust emission, transport and transformation processes needs to be improved, especially when facing the possible effects of further anthropogenic desertification and climate change

    An case of extreme particulate matter concentrations over Central Europe caused by dust emitted over the southern Ukraine

    Get PDF
    On 24 March 2007, an extraordinary dust plume was observed in the Central European troposphere. Satellite observations revealed its origins in a dust storm in Southern Ukraine, where large amounts of soil were resuspended from dried-out farmlands at wind gusts up to 30 m s?1. Along the pathway of the plume, maximum particulate matter (PM10) mass concentrations between 200 and 1400 ?g m?3 occurred in Slovakia, the Czech Republic, Poland, and Germany. Over Germany, the dust plume was characterised by a volume extinction coefficient up to 400 Mm?1 and a particle optical depth of 0.71 at wavelength 0.532 ?m. In-situ size distribution measurements as well as the wavelength dependence of light extinction from lidar and Sun photometer measurements confirmed the presence of a coarse particle mode with diameters around 2?3 ?m. Chemical particle analyses suggested a fraction of 75% crustal material in daily average PM10 and up to 85% in the coarser fraction PM10?2.5. Based on the particle characteristics as well as a lack of increased CO and CO2 levels, a significant impact of biomass burning was ruled out. The reasons for the high particle concentrations in the dust plume were twofold: First, dust was transported very rapidly into Central Europe in a boundary layer jet under dry conditions. Second, the dust plume was confined to a relatively stable boundary layer of 1.4?1.8 km height, and could therefore neither expand nor dilute efficiently. Our findings illustrate the capacity of combined in situ and remote sensing measurements to characterise large-scale dust plumes with a variety of aerosol parameters. Although such plumes from Southern Eurasia seem to occur rather infrequently in Central Europe, its unexpected features highlights the need to improve the description of dust emission, transport and transformation processes needs, particularly when facing the possible effects of further anthropogenic desertification and climate change

    Atmospheric aerosols at the Pierre Auger Observatory and environmental implications

    Full text link
    The Pierre Auger Observatory detects the highest energy cosmic rays. Calorimetric measurements of extensive air showers induced by cosmic rays are performed with a fluorescence detector. Thus, one of the main challenges is the atmospheric monitoring, especially for aerosols in suspension in the atmosphere. Several methods are described which have been developed to measure the aerosol optical depth profile and aerosol phase function, using lasers and other light sources as recorded by the fluorescence detector. The origin of atmospheric aerosols traveling through the Auger site is also presented, highlighting the effect of surrounding areas to atmospheric properties. In the aim to extend the Pierre Auger Observatory to an atmospheric research platform, a discussion about a collaborative project is presented.Comment: Regular Article, 16 pages, 12 figure

    New-particle formation events in a continental boundary layer: first results from the SATURN experiment

    Get PDF
    International audienceDuring the SATURN experiment, which took place from 27 May to 14 June 2002, new particle formation in the continental boundary layer was investigated. Simultaneous ground-based and tethered-balloon-borne measurements were performed, including meteorological parameters, particle number concentrations and size distributions, gaseous precursor concentrations and SODAR and LIDAR observations. Newly formed particles were observed inside the residual layer, before the break-up process of the nocturnal inversion, and inside the mixing layer throughout the break-up of the nocturnal inversion and during the evolution of the planetary boundary layer.</p

    Intranasal insulin for treatment of delirium in older hospitalised patients: Study protocol for a randomised controlled trial

    Full text link
    Introduction Delirium is one of the most common conditions diagnosed in hospitalised older people and is associated with numerous adverse outcomes, yet there are no proven pharmacological treatments. Recent research has identified cerebral glucose hypometabolism as a pathophysiological mechanism offering a therapeutic target in delirium. Insulin, delivered via the intranasal route, acts directly on the central nervous system and has been shown to enhance cerebral metabolism and improve cognition in patients with mild cognitive impairment and dementia. This trial will determine whether intranasal insulin can reduce the duration of delirium in older hospitalised patients. Methods and analysis This is a prospective randomised, placebo-controlled, double-blind study with 6 months follow-up. One hundred patients aged 65 years or older presenting to hospital with delirium admitted under geriatric medicine will be recruited. Participants will be randomised to intranasal insulin detemir or placebo administered twice daily until delirium resolves, defined as Confusion Assessment Method (CAM) negative for 2 days, or discharge from hospital. The primary outcome measure will be duration of delirium using the CAM. Secondary outcome measures will include length of hospital stay, severity of delirium, adherence to treatment, hospital complications, new admission to nursing home, mortality, use of antipsychotic medications during hospital stay and cognitive and physical function at 6 months postdischarge. Ethics and dissemination This trial has been approved by the South Eastern Sydney Human Research and Ethics Committee. Dissemination plans include submission to a peer-reviewed journal for publication and presentation at scientific conferences. Trial registration number ACTRN12618000318280

    Self-supervised generative adverrsarial network for depth estimation in laparoscopic images

    Get PDF
    Dense depth estimation and 3D reconstruction of a surgical scene are crucial steps in computer assisted surgery. Recent work has shown that depth estimation from a stereo image pair could be solved with convolutional neural networks. However, most recent depth estimation models were trained on datasets with per-pixel ground truth. Such data is especially rare for laparoscopic imaging, making it hard to apply supervised depth estimation to real surgical applications. To overcome this limitation, we propose SADepth, a new self-supervised depth estimation method based on Generative Adversarial Networks. It consists of an encoder-decoder generator and a discriminator to incorporate geometry constraints during training. Multi-scale outputs from the generator help to solve the local minima caused by the photometric reprojection loss, while the adversarial learning improves the framework generation quality. Extensive experiments on two public datasets show that SADepth outperforms recent state-of-the-art unsupervised methods by a large margin, and reduces the gap between supervised and unsupervised depth estimation in laparoscopic images

    Integrative network analysis identified key genes and pathways in the progression of hepatitis C virus induced hepatocellular carcinoma

    Get PDF
    Background: Incidence of hepatitis C virus (HCV) induced hepatocellular carcinoma (HCC) has been increasing in the United States and Europe during recent years. Although HCV-associated HCC shares many pathological characteristics with other types of HCC, its molecular mechanisms of progression remain elusive. Methods: To investigate the underlying pathology, we developed a systematic approach to identify deregulated biological networks in HCC by integrating gene expression profiles with high-throughput protein-protein interaction data. We examined five stages including normal (control) liver, cirrhotic liver, dysplasia, early HCC and advanced HCC. Results: Among the five consecutive pathological stages, we identified four networks including precancerous networks (Normal-Cirrhosis and Cirrhosis-Dysplasia) and cancerous networks (Dysplasia-Early HCC, Early-Advanced HCC). We found little overlap between precancerous and cancerous networks, opposite to a substantial overlap within precancerous or cancerous networks. We further found that the hub proteins interacted with HCV proteins, suggesting direct interventions of these networks by the virus. The functional annotation of each network demonstrates a high degree of consistency with current knowledge in HCC. By assembling these functions into a module map, we could depict the stepwise biological functions that are deregulated in HCV-induced hepatocarcinogenesis. Additionally, these networks enable us to identify important genes and pathways by developmental stage, such as LCK signalling pathways in cirrhosis, MMP genes and TIMP genes in dysplastic liver, and CDC2-mediated cell cycle signalling in early and advanced HCC. CDC2 (alternative symbol CDK1), a cell cycle regulatory gene, is particularly interesting due to its topological position in temporally deregulated networks. Conclusions: Our study uncovers a temporal spectrum of functional deregulation and prioritizes key genes and pathways in the progression of HCV induced HCC. These findings present a wealth of information for further investigation

    Spatio-temporal variability and principal components of the particle number size distribution in an urban atmosphere

    Get PDF
    A correct description of fine (diameter <1 μm) and ultrafine (<0.1 μm) aerosol particles in urban areas is of interest for particle exposure assessment but also basic atmospheric research. We examined the spatio-temporal variability of atmospheric aerosol particles (size range 3–800 nm) using concurrent number size distribution measurements at a maximum of eight observation sites in and around Leipzig, a city in Central Europe. Two main experiments were conducted with different time span and number of observation sites (2 years at 3 sites; 1 month at 8 sites). A general observation was that the particle number size distribution varied in time and space in a complex fashion as a result of interaction between local and far-range sources, and the meteorological conditions. To identify statistically independent factors in the urban aerosol, different runs of principal component (PC) analysis were conducted encompassing aerosol, gas phase, and meteorological parameters from the multiple sites. Several of the resulting PCs, outstanding with respect to their temporal persistence and spatial coverage, could be associated with aerosol particle modes: a first accumulation mode ("droplet mode", 300–800 nm), considered to be the result of liquid phase processes and far-range transport; a second accumulation mode (centered around diameters 90–250 nm), considered to result from primary emissions as well as aging through condensation and coagulation; an Aitken mode (30–200 nm) linked to urban traffic emissions in addition to an urban and a rural Aitken mode; a nucleation mode (5–20 nm) linked to urban traffic emissions; nucleation modes (3–20 nm) linked to photochemically induced particle formation; an aged nucleation mode (10–50 nm). Additional PCs represented only local sources at a single site, or infrequent phenomena. In summary, the analysis of size distributions of high time and size resolution yielded a surprising wealth of statistical aerosol components occurring in the urban atmosphere over one single city. A paradigm on the behaviour of sub-μm urban aerosol particles is proposed, with recommendations how to efficiently monitor individual sub-fractions across an entire city
    corecore