99 research outputs found

    Cell delivery systems: Toward the next generation of cell therapies for type 1 diabetes.

    Full text link
    Immunoprotection and oxygen supply are vital in implementing a cell therapy for type 1 diabetes (T1D). Without these features, the transplanted islet cell clusters will be rejected by the host immune system, and necrosis will occur due to hypoxia. The use of anti-rejection drugs can help protect the transplanted cells from the immune system; yet, they also may have severe side effects. Cell delivery systems (CDS) have been developed for islet transplantation to avoid using immunosuppressants. CDS provide physical barriers to reduce the immune response and chemical coatings to reduce host fibrotic reaction. In some CDS, there is architecture to support vascularization, which enhances oxygen exchange. In this review, we discuss the current clinical and preclinical studies using CDS without immunosuppression as a cell therapy for T1D. We find that though CDS have been demonstrated for their ability to support immunoisolation of the grafted cells, their functionality has not been fully optimized. Current advanced methods in clinical trials demonstrate the systems are partly functional, physically complicated to implement or inefficient. However, modifications are being made to overcome these issues

    Insulin trafficking in a glucose responsive engineered human liver cell line is regulated by the interaction of ATP-sensitive potassium channels and voltage- gated calcium channels

    Full text link
    Type I diabetes is caused by the autoimmune destruction of pancreatic beta (â) cells [1]. Current treatment requires multiple daily injections of insulin to control blood glucose levels. Tight glucose control lowers, but does not eliminate, the onset of diabetic complications, which greatly reduce the quality and longevity of life for patients. Transplantation of pancreatic tissue as a treatment is restricted by the scarcity of donors and the requirement for lifelong immunosuppression to preserve the graft, which carries adverse side-effects. This is of particular concern as Type 1 diabetes predominantly affects children. Lack of glucose control could be overcome by genetically engineering "an artificial â-cell" that is capable of synthesising, storing and secreting insulin in response to metabolic signals. The donor cell type must be readily accessible and capable of being engineered to synthesise, process, store and secrete insulin under physiological conditions

    Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates

    Get PDF
    The foreign body response is an immune-mediated reaction that can lead to the failure of implanted medical devices and discomfort for the recipient. There is a critical need for biomaterials that overcome this key challenge in the development of medical devices. Here we use a combinatorial approach for covalent chemical modification to generate a large library of variants of one of the most widely used hydrogel biomaterials, alginate. We evaluated the materials in vivo and identified three triazole-containing analogs that substantially reduce foreign body reactions in both rodents and, for at least 6 months, in non-human primates. The distribution of the triazole modification creates a unique hydrogel surface that inhibits recognition by macrophages and fibrous deposition. In addition to the utility of the compounds reported here, our approach may enable the discovery of other materials that mitigate the foreign body response.Leona M. and Harry B. Helmsley Charitable Trust (3-SRA-2014-285-M-R)United States. National Institutes of Health (EB000244)United States. National Institutes of Health (EB000351)United States. National Institutes of Health (DE013023)United States. National Institutes of Health (CA151884)United States. National Institutes of Health (P41EB015871-27)National Cancer Institute (U.S.) (P30-CA14051

    Long-term correction of diabetes in rats after lentiviral hepatic insulin gene therapy

    Get PDF
    Aims/hypothesis: Type 1 diabetes results from the autoimmune destruction of pancreatic beta cells. Exogenous insulin therapy cannot achieve precise physiological control of blood glucose concentrations, and debilitating complications develop. Lentiviral vectors are promising tools for liver-directed gene therapy. However, to date, transduction rates in vivo remain low in hepatocytes, without the induction of cell cycling. We investigated long-term transgene expression in quiescent hepatocytes in vitro and determined whether the lentiviral delivery of furin-cleavable insulin to the liver could reverse diabetes in rats. Materials and methods: To improve transduction efficiency in vitro, we optimised hepatocyte isolation and maintenance protocols and, using an improved surgical delivery method, delivered furin-cleavable insulin alone or empty vector to the livers of streptozotocin-induced diabetic rats by means of a lentiviral vector. Rats were monitored for changes in body weight and blood glucose, and intravenous glucose tolerance tests were performed. Expression of insulin was determined by RT-PCR, immunohistochemistry and electron microscopy. Results: We achieved long-term transgene expression in quiescent hepatocytes in vitro (87 ± 1.2% transduction efficiency), with up to 60 ± 3.2% transduction in vivo. We normalised blood glucose for 500 days-a significantly longer period than previously reported-making this the first successful study using a lentiviral vector. This procedure resulted in the expression of genes encoding several beta cell transcription factors, some pancreatic endocrine transdifferentiation, hepatic insulin storage in granules, and restoration of glucose tolerance. Liver function tests remained normal. Importantly, pancreatic exocrine transdifferentiation did not occur. Conclusions/interpretation: Our data suggest that this regimen may ultimately be employed for the treatment of type 1 diabetes

    Measuring the Evolutionary Rewiring of Biological Networks

    Get PDF
    We have accumulated a large amount of biological network data and expect even more to come. Soon, we anticipate being able to compare many different biological networks as we commonly do for molecular sequences. It has long been believed that many of these networks change, or “rewire”, at different rates. It is therefore important to develop a framework to quantify the differences between networks in a unified fashion. We developed such a formalism based on analogy to simple models of sequence evolution, and used it to conduct a systematic study of network rewiring on all the currently available biological networks. We found that, similar to sequences, biological networks show a decreased rate of change at large time divergences, because of saturation in potential substitutions. However, different types of biological networks consistently rewire at different rates. Using comparative genomics and proteomics data, we found a consistent ordering of the rewiring rates: transcription regulatory, phosphorylation regulatory, genetic interaction, miRNA regulatory, protein interaction, and metabolic pathway network, from fast to slow. This ordering was found in all comparisons we did of matched networks between organisms. To gain further intuition on network rewiring, we compared our observed rewirings with those obtained from simulation. We also investigated how readily our formalism could be mapped to other network contexts; in particular, we showed how it could be applied to analyze changes in a range of “commonplace” networks such as family trees, co-authorships and linux-kernel function dependencies

    Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015)

    Full text link

    Insulin expressing hepatocytes not destroyed in transgenic NOD mice.

    No full text
    BACKGROUND: The liver has been suggested as a suitable target organ for gene therapy of Type 1 diabetes. However, the fundamental issue whether insulin-secreting hepatocytes in vivo will be destroyed by the autoimmune processes that kill pancreatic beta cells has not been fully addressed. It is possible that the insulin secreting liver cells will be destroyed by the immune system because hepatocytes express major histocompatibility complex (MHC) class I molecules and exhibit constitutive Fas expression; moreover the liver has antigen presenting activity. Together with previous reports that proinsulin is a possible autoantigen in the development of Type 1 diabetes, the autoimmune destruction of insulin producing liver cells is a distinct possibility. METHODS: To address this question, transgenic Non-Obese Diabetic (NOD) mice which express insulin in the liver were made using the Phosphoenolpyruvate Carboxykinase (PEPCK) promoter to drive the mouse insulin I gene (Ins). RESULTS: The liver cells were found to possess preproinsulin mRNA, translate (pro)insulin in vivo and release it when exposed to 100 nmol/l glucagon in vitro. The amount of insulin produced was however significantly lower than that produced by the pancreas. The transgenic PEPCK-Ins NOD mice became diabetic at 20-25 weeks of age, with blood glucose levels of 24.1 +/- 1.7 mmol/l. Haematoxylin and eosin staining of liver sections from these transgenic NOD PEPCK-Ins mice revealed the absence of an infiltrate of immune cells, a feature that characterised the pancreatic islets of these mice. CONCLUSIONS: These data show that hepatocytes induced to produce (pro)insulin in NOD mice are not destroyed by an ongoing autoimmune response; furthermore the expression of (pro)insulin in hepatocytes is insufficient to prevent development of diabetes in NOD mice. These results support the use of liver cells as a potential therapy for type 1 diabetes. However it is possible that a certain threshold level of (pro)insulin production might have to be reached to trigger the autoimmune response
    corecore