1,209 research outputs found
Support for graphicacy: a review of textbooks available to accounting students
This Teaching Note reports on the support available in textbooks for graphicacy that will help students understand the complexities of graphical displays. Graphical displays play a significant role in financial reporting, and studies have found evidence of measurement distortion and selection bias. To understand the complexities of graphical displays, students need a sound understanding of graphicacy and support from the textbooks available to them to develop that understanding. The Teaching Note reports on a survey that examined the textbooks available to students attending two Scottish universities. The support of critical graphicacy skills was examined in conjunction with textbook characteristics. The survey, which was not restricted to textbooks designated as required reading, examined the textbooks for content on data measurement and graphical displays. The findings highlight a lack of support for graphicacy in the textbooks selected. The study concludes that accounting educators need to scrutinize more closely the selection of textbooks and calls for more extensive research into textbooks as a pedagogic tool
Low-Velocity Halo Clouds
Models that reproduce the observed high-velocity clouds (HVCs) also predict
clouds at lower radial velocities that may easily be confused with Galactic
disk (|z| < 1 kpc) gas. We describe the first search for these low-velocity
halo clouds (LVHCs) using IRAS data and the initial data from the Galactic
Arecibo L-band Feed Array survey in HI (GALFA-HI). The technique is based upon
the expectation that such clouds should, like HVCs, have very limited infrared
thermal dust emission as compared to their HI column density. We describe our
'displacement-map' technique for robustly determining the dust-to-gas ratio of
clouds and the associated errors that takes into account the significant
scatter in the infrared flux from the Galactic disk gas. We find that there
exist lower-velocity clouds that have extremely low dust-to-gas ratios,
consistent with being in the Galactic halo - candidate LVHCs. We also confirm
the lack of dust in many HVCs with the notable exception of complex M, which we
consider to be the first detection of warm dust in HVCs. We do not confirm the
previously reported detection of dust in complex C. In addition, we find that
most Intermediate- and Low-Velocity clouds that are part of the Galactic disk
have a higher 60 micron/100 micron flux ratio than is typically seen in
Galactic HI, which is consistent with a previously proposed picture in which
fast-moving Galactic clouds have smaller, hotter dust grains.Comment: 30 pages, 7 figures. Accepted to the Ap
Advancing Critical Care in the ICU: A Human-Centered Biomedical Data Visualization Systems
The purpose of this research is to provide medical clinicians with a new technology for interpreting large and diverse datasets to expedite critical care decision-making in the ICU. We refer to this technology as the medical information visualization assistant (MIVA). MIVA delivers multivariate biometric (bedside) data via a visualization display by transforming and organizing it into temporal resolutions that can provide contextual knowledge to clinicians. The result is a spatial organization of multiple datasets that allows rapid analysis and interpretation of trends. Findings from the usability study of the MIVA static prototype and heuristic inspection of the dynamic prototype suggest that using MIVA can yield faster and more accurate results. Furthermore, comments from the majority of the experimental group and the heuristic inspectors indicate that MIVA can facilitate clinical task flow in context-dependent health care settings
GiViP: A Visual Profiler for Distributed Graph Processing Systems
Analyzing large-scale graphs provides valuable insights in different
application scenarios. While many graph processing systems working on top of
distributed infrastructures have been proposed to deal with big graphs, the
tasks of profiling and debugging their massive computations remain time
consuming and error-prone. This paper presents GiViP, a visual profiler for
distributed graph processing systems based on a Pregel-like computation model.
GiViP captures the huge amount of messages exchanged throughout a computation
and provides an interactive user interface for the visual analysis of the
collected data. We show how to take advantage of GiViP to detect anomalies
related to the computation and to the infrastructure, such as slow computing
units and anomalous message patterns.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
Impression management and retrospective sense-making in corporate annual reports: banks' graphical reporting during the global financial crisis
This study investigates two potentially complementary reporting scenarios in annual reports: reactive impression management and retrospective sense-making. It examines stock market performance graphs in European listed banks? annual reports before and during the global financial crisis. Our results indicate that banks reacted to the global financial crisis by omitting stock market performance graphs from the annual report and from its most prominent sections. On the other hand, banks reduced favorable distortions and favorable performance comparisons. No significant evidence of retrospective sense-making is found. Overall, the findings are consistent with impression management incorporating human cognitive biases, with companies preferring misrepresentation by omission over misrepresentation by commission. Under high public scrutiny, banks appear to seek to provide a more favorable view by concealing negative information rather than by favorable distortions or comparisons. The study contributes to the development of impression management theories. It uses a psychological interpretation that incorporates human cognitive biases, rather than adopting a purely economically based perspective
Instability, Intermixing and Electronic Structure at the Epitaxial LaAlO3/SrTiO3(001) Heterojunction
The question of stability against diffusional mixing at the prototypical
LaAlO3/SrTiO3(001) interface is explored using a multi-faceted experimental and
theoretical approach. We combine analytical methods with a range of
sensitivities to elemental concentrations and spatial separations to
investigate interfaces grown using on-axis pulsed laser deposition. We also
employ computational modeling based on the density function theory as well as
classical force fields to explore the energetic stability of a wide variety of
intermixed atomic configurations relative to the idealized, atomically abrupt
model. Statistical analysis of the calculated energies for the various
configurations is used to elucidate the relative thermodynamic stability of
intermixed and abrupt configurations. We find that on both experimental and
theoretical fronts, the tendency toward intermixing is very strong. We have
also measured and calculated key electronic properties such as the presence of
electric fields and the value of the valence band discontinuity at the
interface. We find no measurable electric field in either the LaAlO3 or SrTiO3,
and that the valence band offset is near zero, partitioning the band
discontinuity almost entirely to the conduction band edge. Moreover, we find
that it is not possible to account for these electronic properties
theoretically without including extensive intermixing in our physical model of
the interface. The atomic configurations which give the greatest electrostatic
stability are those that eliminate the interface dipole by intermixing, calling
into question the conventional explanation for conductivity at this interface -
electronic reconstruction. Rather, evidence is presented for La indiffusion and
doping of the SrTiO3 below the interface as being the cause of the observed
conductivity
Thermal simulation software outputs: a conceptual data model of information presentation for building design decision-making
Building simulation outputs are inherently complex and numerous. Extracting meaningful information from them requires knowledge which mainly resides only in the hands of experts. Initiatives to address this problem tend either to provide very constrained output data interfaces or leave it to the user to customize data organisation and query. This work proposes a conceptual data model from which meaningful dynamic thermal simulation information for building design decision-making may be constructed and presented to the user. It describes how the model was generated and can become operational, with examples of its applications to practical problems. The paper therefore contains useful information for software developers to help in specifying and designing simulation outputs which better respond to building designers’ needs
A peculiar HI cloud near the distant globular cluster Pal 4
We present 21-cm observations of four Galactic globular clusters, as part of
the on-going GALFA-HI Survey at Arecibo. We discovered a peculiar HI cloud in
the vicinity of the distant (109 kpc) cluster Pal 4, and discuss its properties
and likelihood of association with the cluster. We conclude that an association
of the HI cloud and Pal 4 is possible, but that a chance coincidence between
Pal 4 and a nearby compact high-velocity cloud cannot be ruled out altogether.
New, more stringent upper limits were derived for the other three clusters: M
3, NGC 5466, and Pal 13. We briefly discuss the fate of globular cluster gas
and the interaction of compact clouds with the Galactic Halo gas.Comment: Accepted for publication in MNRA
15 years of protest and media technologies scholarship: A sociotechnical timeline
This article investigates the relationship between the invention of new media technologies and scholarship concerning protest and political engagement. Building on an innovative approach that moves beyond a systematic literature review, this article contributes to our understanding of scholarship concerning digital communication technologies and how they may have been adopted and shaped protest movements and political engagement. Based on visualizations, we draw a sociotechnical timeline of protest and media technology scholarship within three dimensions: technological development, methods and techniques, and the social phenomena under investigation. The article concludes by identifying major trends in protest and media technologies scholarship over the past 15 years. The sociotechnical timeline enhances our understanding of academic discourse at the intersection of protest and media technologies by highlighting shortcomings and potential for future research
- …
