13,460 research outputs found
Unified Brane Gravity: Cosmological Dark Matter from Scale Dependent Newton Constant
We analyze, within the framework of unified brane gravity, the weak-field
perturbations caused by the presence of matter on a 3-brane. Although deviating
from the Randall-Sundrum approach, the masslessness of the graviton is still
preserved. In particular, the four-dimensional Newton force law is recovered,
but serendipitously, the corresponding Newton constant is shown to be
necessarily lower than the one which governs FRW cosmology. This has the
potential to puzzle out cosmological dark matter. A subsequent conjecture
concerning galactic dark matter follows.Comment: 6 pages, to be published in Phys. Rev.
Regulation of gene expression and its role in long-term memory and synaptic plasticity
Histories of science yet to be written will view the latter half of this century as the Age of Molecular Genetics. From a flash of insight that yielded the double helix (1) to the first genetic clone of a mammal (2), molecular genetics has invaded every aspect of biological research. Initially, this molecular-genetic onslaught was limited to species, such as bacteria, yeast, nematodes, and fruit flies, whose size and life cycle constituted an economy of scale that was advantageous to breeding (3). With the introduction of gene-knockout techniques to mice (4), however, molecular genetics now is storming mammals (5, 6). In the broadest sense, the recent paper by Guzowski and McGaugh (7) represents a vanguard of this invasion. By using antisense oligonucleotides as “pharmaceutical” disruptors of gene expression, they have liberated molecular genetics from breeding. Endogenous regulation of gene expression has been outflanked by exogenous control
From Spitzer Galaxy Photometry to Tully-Fisher Distances
This paper involves a data release of the observational campaign: Cosmicflows
with Spitzer (CFS). Surface photometry of the 1270 galaxies constituting the
survey is presented. An additional ~ 400 galaxies from various other Spitzer
surveys are also analyzed. CFS complements the Spitzer Survey of Stellar
Structure in Galaxies, that provides photometry for an additional 2352
galaxies, by extending observations to low galactic latitudes (|b|<30 degrees).
Among these galaxies are calibrators, selected in K band, of the Tully-Fisher
relation. The addition of new calibrators demonstrate the robustness of the
previously released calibration. Our estimate of the Hubble constant using
supernova host galaxies is unchanged, H0 = 75.2 +/- 3.3 km/s/Mpc.
Distance-derived radial peculiar velocities, for the 1935 galaxies with all the
available parameters, will be incorporated into a new data release of the
Cosmicflows project. The size of the previous catalog will be increased by 20%,
including spatial regions close to the Zone of Avoidance.Comment: Accepted for publication in MNRAS, 16 pages, 14 figures, 6 table
Coevolution Of Risk Perception, Sexual Behaviour, And Hiv Transmission In An Agent-Based Model
The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.jtbi.2013.08.014 © 2013. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/Risk perception shapes individual behaviour, and is in turn shaped by the consequences of that behaviour. Here we explore this dynamics in the context of human immunodeficiency virus (HIV) spread. We construct a simplified agent-based model based on a partner selection game, where individuals are paired with others in the population, and through a decision tree, agree on unprotected sex, protected sex, or no sex. An individual's choice is conditioned on their HIV status, their perceived population-level HIV prevalence, and the preferences expressed by the individual with whom they are paired. HIV is transmitted during unprotected sex with a certain probability As expected, in model simulations, the perceived population-level HIV prevalence climbs along with actual HIV prevalence. During this time, HIV individuals increasingly switch from unprotected sex to protected sex, HIV+ individuals continue practicing unprotected sex whenever possible, and unprotected sex between HIV+ and HIV individuals eventually becomes rare. We also find that the perceived population-level HIV prevalence diverges according to HIV status: HIV individuals develop a higher perceived HIV prevalence than HIV+ individuals, although this result is sensitive to how much information is derived from global versus local sources. This research illustrates a potential mechanism by which distinct groups, as defined by their sexual behaviour, HIV status, and risk perceptions, can emerge through coevolution of HIV transmission and risk perception dynamics.CIHR Operating GrantNSERC Discovery Gran
The Drosophila mutation turnip has pleiotropic behavioral effects and does not specifically affect learning
The Drosophila mutant turnip (tur) was isolated on the basis of its poor performance in an olfactory learning task, and also has a reduction in protein kinase C (PKC) activity. PKC has been found in the nervous systems of a wide range of organisms and appears to have an important role in learning and memory-related processes. Unfortunately, previous reports documenting the learning defect of tur lacked the controls required to assess the origins of the poor performance of the mutant. We have analyzed the effects of the tur mutation on both associative and nonassociative learning as well as on PKC activity. Additionally, the effects of the mutation on the task-relevant sensorimotor abilities of the flies were assessed. Although we were able to replicate previous behavioral and biochemical results obtained with tur, we discovered that the tur mutation also affected response to electric shock and caused a drastic reduction in the locomotor ability of the flies. Because locomotion is an essential component of the learning assays, this result makes it impossible to conclude that tur specifically affects learning and demonstrates the crucial importance of sensorimotor controls in conditioning experiments
Binary Galaxies in the Local Supercluster and Its Neighborhood
We report a catalog of 509 pairs identified among 10403 nearby galaxies with
line-of-sight velocities V_LG < 3500 km/s.We selected binary systems in
accordance with two criteria (bounding and temporal), which require the
physical pair of galaxies to have negative total energy and its components to
be located inside the zero-velocity surface. We assume that individual galaxy
masses are proportional to their total K-band luminosities, M = L_K x 6M/L. The
catalog gives the magnitudes and morphological types of galaxies and also the
projected (orbital) masses and pair isolation indices. The component
line-of-sight velocity differences and projected distances of the binary
systems considered have power-law distributions with the median values of 35
km/s and 123 kpc, respectively. The median mass-to-K-band luminosity ratio is
equal to 11 M/L, and its uncertainty is mostly due to the errors of measured
velocities. Our sample of binary systems has a typical density contrast of d
ro/ro_c ~ 500 and a median crossing time of about 3.5 Gyr. We point out the
substantial fraction of binary systems consisting of late-type dwarf galaxies,
where the luminosities of both components are lower than that of the Small
Magellanic Cloud. The median projected distance for 41 such pairs is only 30
kpc, and the median difference of their line-of-sight velocities is equal to 14
km/s which is smaller than the typical error for radial-velocity (30 km/s).
This specific population of gas-rich dwarf binary galaxies such as I Zw 18 may
be at the stage immediately before merging of its components. Such objects,
which are usually lost in flux-limited (and not distance-limited) samples
deserve a thorough study in the HI radio line with high spatial and velocity
resolution.Comment: published in Astrophysical Bulletin, 2008, Vol. 63, No. 4, pp.
299-34
Fruit flies and intellectual disability
Mental retardation-known more commonly nowadays as intellectual disability-is a severe neurological condition affecting up to 3% of the general population. As a result of the analysis of familial cases and recent advances in clinical genetic testing, great strides have been made in our understanding of the genetic etiologies of mental retardation. Nonetheless, no treatment is currently clinically available to patients suffering from intellectual disability. Several animal models have been used in the study of memory and cognition. Established paradigms in Drosophila have recently captured cognitive defects in fly mutants for orthologs of genes involved in human intellectual disability. We review here three protocols designed to understand the molecular genetic basis of learning and memory in Drosophila and the genes identified so far with relation to mental retardation. In addition, we explore the mental retardation genes for which evidence of neuronal dysfunction other than memory has been established in Drosophila. Finally, we summarize the findings in Drosophila for mental retardation genes for which no neuronal information is yet available. All in all, this review illustrates the impressive overlap between genes identified in human mental retardation and genes involved in physiological learning and memory
Regulation of multimers via truncated isoforms: a novel mechanism to control nitric-oxide signaling
Nitric oxide (NO) is an essential regulator of Drosophila development and physiology. We describe a novel mode of regulation of NO synthase (NOS) function that uses endogenously produced truncated protein isoforms of Drosophila NOS (DNOS). These isoforms inhibit NOS enzymatic activity in vitro and in vivo, reflecting their ability to form complexes with the full-length DNOS protein (DNOS1). Truncated isoforms suppress the antiproliferative action of DNOS1 in the eye imaginal disc by impacting the retinoblastoma-dependent pathway, yielding hyperproliferative phenotypes in pupae and adult flies. Our results indicate that endogenous products of the dNOS locus act as dominant negative regulators of NOS activity during Drosophila development
The Balance of Dark and Luminous Mass in Rotating Galaxies
A fine balance between dark and baryonic mass is observed in spiral galaxies.
As the contribution of the baryons to the total rotation velocity increases,
the contribution of the dark matter decreases by a compensating amount. This
poses a fine-tuning problem for \LCDM galaxy formation models, and may point to
new physics for dark matter particles or even a modification of gravity.Comment: 4 pages RevTeX. Phys. Rev. Letters, in pres
Light Propagation in Inhomogeneous Universes. IV. Strong Lensing and Environmental Effects
We study the gravitational lensing of high-redshift sources in a LCDM
universe. We have performed a series of ray-tracing experiments, and selected a
subsample of cases of strong lensing (multiple images, arcs, and Einstein
rings). For each case, we identify a massive galaxy that is primarily
responsible for lensing, and studied how the various density inhomogeneities
along the line of sight (other galaxies, background matter) affect the
properties of the image. The matter located near the lensing galaxy, and
physically associated with it, has a small effect. The background matter
increases the magnification by a few percents at most, while nearby galaxies
can increase it by up to about 10 percent. The effect on the image separation
is even smaller. The only significant effect results from the random alignment
of physically unassociated galaxies, which can increase the magnification by
factors of several, create additional images, and turn arcs into rings. We
conclude that the effect of environment on strong lensing in negligible in
general, and might be important only in rare cases. We show that our conclusion
does not depend on the radial density profile of the galaxies responsible for
lensing.Comment: 23 pages, 7 figures (one in color). Accepted for publication in The
Astrophysical Journal. Minor typos correcte
- …
