771 research outputs found
Digital reconstruction of the Ceprano calvarium (Italy), and implications for its interpretation
The Ceprano calvarium was discovered in fragments on March 1994 near the town of Ceprano in southern Latium (Italy), embedded in Middle Pleistocene layers. After reconstruction, its morphological
features suggests that the specimen belongs to an archaic variant of H. heidelbergensis, representing a proxy for the last common ancestor of the diverging clades that respectively led to H. neanderthalensis and H. sapiens. Unfortunately, the calvarium was taphonomically damaged. The postero-lateral vault, in particular, appears deformed and this postmortem damage may have infuenced previous interpretations. Specifcally, there is a depression on the fragmented left parietal, while the right cranial wall is warped and angulated. This deformation afected the shape of the occipital squama, producing an inclination of the transverse occipital torus. In this paper, after X-ray microtomography (μCT) of both the calvarium and several additional fragments, we analyze consistency and pattern of the taphonomic deformation that afected the specimen, before the computer-assisted retrodeformation has been performed; this has also provided the opportunity to reappraise early attempts at restoration. As a result, we ofer a revised interpretation for the Ceprano calvarium’s original shape, now free from the previous uncertainties, along with insight for its complex depositional and taphonomic history
Measurement of Ultra-Low Potassium Contaminations with Accelerator Mass Spectrometry
Levels of trace radiopurity in active detector materials is a subject of
major concern in low-background experiments. Among the radio-isotopes, \k40
is one of the most abundant and yet whose signatures are difficult to reject.
Procedures were devised to measure trace potassium concentrations in the
inorganic salt CsI as well as in organic liquid scintillator (LS) with
Accelerator Mass Spectrometry (AMS), giving, respectively, the
\k40-contamination levels of and g/g.
Measurement flexibilities and sensitivities are improved over conventional
methods. The projected limiting sensitivities if no excess of potassium signals
had been observed over background are g/g and g/g for the CsI and LS, respectively. Studies of the LS samples
indicate that the radioactive contaminations come mainly in the dye solutes,
while the base solvents are orders of magnitude cleaner. The work demonstrate
the possibilities of measuring naturally-occurring isotopes with the AMS
techniques.Comment: 18 pages, 4 figures, 3 table
The 10Be contents of SNC meteorites
Several authors have explored the possibility that the Shergottites, Nakhlites, and Chassigny (SNC) came from Mars. The spallogenic gas contents of the SNC meteorites have been used to: constrain the sizes of the SNC's during the last few million years; to establish groupings independent of the geochemical ones; and to estimate the likelihood of certain entries in the catalog of all conceivable passages from Mars to Earth. The particular shielding dependence of Be-10 makes the isotope a good probe of the irradiation conditions experienced by the SNC meteorites. The Be-10 contents of nine members of the group were measured using the technique of accelerator mass spectrometry. The Be-10 contents of Nakhla, Governador Valadares, Chassigny, and probably Lafayette, about 20 dpm/kg, exceed the values expected from irradiation of the surface of a large body. The Be-10 data therfore do not support scenario III of Bogard et al., one in which most of the Be-10 in the SNC meteorites would have formed on the Martian surface; they resemble rather the Be-10 contents found in many ordinary chondrites subjected to 4 Pi exposures. The uncertainties of the Be-10 contents lead to appreciable errors in the Be-10 ages, t(1) = -1/lambda ln(1 Be-10/Be-10). Nonetheless, the Be-10 ages are consistent with the Ne-21 ages calculated assuming conventional, small-body production rates and short terrestrial ages for the finds. It is believed that this concordance strengthens the case for at least 3 different irradiation ages for the SNC meteorites. Given the similar half-thicknesses of the Be-10 and Ne-21 production rates, the ratios of the Be-10 and Ne-21 contents do not appear consistent with common ages for any of the groups. In view of the general agreement between the Be-10 and Ne-21 ages it does not seem useful at this time to construct multiple-stage irradiation histories for the SNC meteorites
Composite THz materials using aligned metallic and semiconductor microwires, experiments and interpretation
We report fabrication method and THz characterization of composite films
containing either aligned metallic (tin alloy) microwires or chalcogenide
As2Se3 microwires. The microwire arrays are made by stack-and-draw fiber
fabrication technique using multi-step co-drawing of low-melting-temperature
metals or semiconductor glasses together with polymers. Fibers are then stacked
together and pressed into composite films. Transmission through metamaterial
films is studied in the whole THz range (0.1-20 THz) using a combination of
FTIR and TDS. Metal containing metamaterials are found to have strong
polarizing properties, while semiconductor containing materials are
polarization independent and could have a designable high refractive index.
Using the transfer matrix theory, we show how to retrieve the complex
polarization dependent refractive index of the composite films. We then detail
the selfconsistent algorithm for retrieving the optical properties of the metal
alloy used in the fabrication of the metamaterial layers by using an effective
medium approximation. Finally, we study challenges in fabrication of
metamaterials with sub-micrometer metallic wires by repeated stack-and-draw
process by comparing samples made using 2, 3 and 4 consecutive drawings. When
using metallic alloys we observe phase separation effects and nano-grids
formation on small metallic wires
Measurement of Trace I-129 Concentrations in CsI Powder and Organic Liquid Scintillator with Accelerator Mass Spectrometry
Levels of trace radiopurity in active detector materials is a subject of
major concern in low-background experiments. Procedures were devised to measure
trace concentrations of I-129 in the inorganic salt CsI as well as in organic
liquid scintillator with Accelerator Mass Spectrometry (AMS) which leads to
improvement in sensitivities by several orders of magnitude over other methods.
No evidence of their existence in these materials were observed. Limits of < 6
X 10^{-13} g/g and < 2.6 X 10^{-17} g/g on the contaminations of I-129 in CsI
and liquid scintillator, respectively, were derived.These are the first results
in a research program whose goals are to develop techniques to measure trace
radioactivity in detector materials by AMS.Comment: Proceedings of 10th International Conference on Accelerator Mass
Spectrometr
Fiber-Drawn Metamaterial for THz Waveguiding and Imaging
In this paper, we review the work of our group in fabricating metamaterials for terahertz (THz) applications by fiber drawing. We discuss the fabrication technique and the structures that can be obtained before focusing on two particular applications of terahertz metamaterials, i.e., waveguiding and sub-diffraction imaging. We show the experimental demonstration of THz radiation guidance through hollow core waveguides with metamaterial cladding, where substantial improvements were realized compared to conventional hollow core waveguides, such as reduction of size, greater flexibility, increased single-mode operating regime, and guiding due to magnetic and electric resonances. We also report recent and new experimental work on near- and far-field THz imaging using wire array metamaterials that are capable of resolving features as small as λ/28
Subwavelength terahertz imaging via virtual superlensing in the radiating near field
Paradoxically, imaging with resolution much below the wavelength -
now common place in the visible spectrum - remains challenging at lower
frequencies, where arguably it is needed most due to the large wavelengths
used. Techniques to break the diffraction limit in microscopy have led to many
breakthroughs across sciences, but remain largely confined to the optical
spectrum, where near-field coupled fluorophores operate. At lower frequencies,
exponentially decaying evanescent waves must be measured directly, requiring a
tip or antenna to be brought into very close vicinity to the object. This is
often difficult, and can be problematic as the probe can perturb the near-field
distribution itself. Here we show the information encoded in evanescent waves
can be probed further than previously thought possible, and a truthful image of
the near-field reconstructed through selective amplification of evanescent
waves - akin to a virtual superlens reversing the evanescent decay. We quantify
the trade-off between noise and measurement distance, and experimentally
demonstrate reconstruction of complex images with subwavelength features, down
to a resolution of and amplitude signal-to-noise ratios below 25dB
between 0.18-1.5THz. Our procedure can be implemented with any near field probe
far from the reactive near field region, greatly relaxes experimental
requirements for subwavelength imaging in particular at sub-optical
frequencies, and opens the door to non-perturbing near-field scanning
Recommended from our members
Interfacing optical fibers with plasmonic nanoconcentrators
The concentration of light to deep-subwavelength dimensions plays a key role in nanophotonics and has the potential to bring major breakthroughs in fields demanding to understand and initiate interaction on nanoscale dimensions, including molecular disease diagnostics, DNA sequencing, single nanoparticle manipulation and characterization, and semiconductor inspection. Although planar metallic nanostructures provide a pathway to nanoconcentration of electromagnetic fields, the delivery/collection of light to/from such plasmonic nanostructures is often inefficient, narrow-band, and requires complicated excitations schemes, limiting widespread applications. Moreover, planar photonic devices reveal a reduced flexibility in terms of bringing the probe light to the sample. An ideal photonic-plasmonic device should combine (i) a high spatial resolution at the nanometre level beyond to what is state-of-the-art in near-field microscopy with (ii) flexible optical fibers to promote a straightforward integration into current near-field scanning microscopes. Here, we review the recent development and main achievements of nanoconcentrators interfacing optical fibers at their end-faces that reach entirely monolithic designs, including campanile probes, gold-coated fiber-taper nanotips, and fiber-integrated gold nanowires
Two-dimensional imaging in hyperbolic media-the role of field components and ordinary waves
We study full vector imaging of two dimensional source fields through finite slabs of media with extreme anisotropy, such as hyperbolic media. For this, we adapt the exact transfer matrix method for uniaxial media to calculate the two dimensional transfer functions and point spread functions for arbitrary vector fields described in Cartesian coordinates. This is more convenient for imaging simulations than the use of the natural, propagation direction-dependent TE/TM basis and clarifies which field components contribute to sub-diffraction imaging. We study the effect of ordinary waves on image quality, which previous one-dimensional approaches could not consider. Perfect sub-diffraction imaging can be achieved if longitudinal fields are measured, but in the more common case where field intensities or transverse fields are measured, ordinary waves cause artefacts. These become more prevalent when attempting to image large objects with high resolution. We discuss implications for curved hyperbolic imaging geometries such as hyperlenses
- …
