1,751 research outputs found
OGO-E space vehicle response to transient loading at Atlas booster engine cutoff
Computer program for OGO-E vehicle response analysis to transient loading during Atlas booster burnou
Mode-division-multiplexing of multiple Bessel-Gaussian beams carrying orbital-angular-momentum for obstruction-tolerant free-space optical and millimetre-wave communication links
We experimentally investigate the potential of using ‘self-healing’ Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively
Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m
We experimentally demonstrate and characterize the
performance of a 400-Gbit/s orbital angular momentum
(OAM) multiplexed free-space optical link over 120-
meters on the roof of a building. Four OAM beams, each
carrying a 100-Gbit/s QPSK channel are multiplexed and
transmitted. We investigate the influence of channel
impairments on the received power, inter-modal
crosstalk among channels, and system power penalties.
Without laser tracking and compensation systems, the
measured received power and crosstalk among OAM
channels fluctuate by 4.5 dB and 5 dB, respectively, over
180 seconds. For a beam displacement of 2 mm that
corresponds to a pointing error less than 16.7 μrad, the
link bit-error-rates are below the forward error
correction threshold of 3.8×10-3 for all channels. Both
experimental and simulation results show that power
penalties increase rapidly when the displacement
increases
Canonical description of ideal magnetohydrodynamic flows and integrals of motion
In the framework of the variational principle the canonical variables
describing ideal magnetohydrodynamic (MHD) flows of general type (i.e., with
spatially varying entropy and nonzero values of all topological invariants) are
introduced. The corresponding complete velocity representation enables us not
only to describe the general type flows in terms of single-valued functions,
but also to solve the intriguing problem of the ``missing'' MHD integrals of
motion. The set of hitherto known MHD local invariants and integrals of motion
appears to be incomplete: for the vanishing magnetic field it does not reduce
to the set of the conventional hydrodynamic invariants. And if the MHD analogs
of the vorticity and helicity were discussed earlier for the particular cases,
the analog of Ertel invariant has been so far unknown. It is found that on the
basis of the new invariants introduced a wide set of high-order invariants can
be constructed. The new invariants are relevant both for the deeper insight
into the problem of the topological structure of the MHD flows as a whole and
for the examination of the stability problems. The additional advantage of the
proposed approach is that it enables one to deal with discontinuous flows,
including all types of possible breaks.Comment: 16 page
Using a Complex Optical Orbital-Angular-Momentum Spectrum to Measure Object Parameters: A Spatial Domain Approach
Light beams can be characterized by their complex spatial profiles in both
intensity and phase. Analogous to time signals, which can be decomposed into
multiple orthogonal frequency functions, a light beam can also be decomposed
into a set of spatial modes that are taken from an orthogonal basis. Such a
decomposition can provide a tool for spatial spectrum analysis, which may allow
the stable, accurate and robust extraction of physical object information that
may not be readily achievable using traditional approaches. As an example, we
measure the opening angle of an object using the complex spectrum of orbital
angular momentum (OAM) modes as the basis, achieving a more than 15 dB
signal-to-noise ratio. We find that the dip (i.e., notch) positions of the OAM
intensity spectrum are dependent on an object's opening angle but independent
of the object opening's angular orientation, whereas the slope of the OAM phase
spectrum is dependent on the object opening's orientation but independent on
the opening angle.Comment: 19 pages, 6 figure
Orbital Angular Momentum-based Space Division Multiplexing for High-capacity Underwater Optical Communications
To increase system capacity of underwater optical communications, we employ
the spatial domain to simultaneously transmit multiple orthogonal spatial
beams, each carrying an independent data channel. In this paper, we multiplex
and transmit four green orbital angular momentum (OAM) beams through a single
aperture. Moreover, we investigate the degrading effects of
scattering/turbidity, water current, and thermal gradient-induced turbulence,
and we find that thermal gradients cause the most distortions and turbidity
causes the most loss. We show systems results using two different data
generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for
1-Gbit/s/beam, we use both techniques since present data-modulation
technologies are faster for infrared (IR) than for green. For the higher-rate
link, data is modulated in the IR, and OAM imprinting is performed in the green
using a specially-designed metasurface phase mask. For the lower rates, a green
laser diode is directly modulated. Finally, we show that inter-channel
crosstalk induced by thermal gradients can be mitigated using multi-channel
equalisation processing.Comment: 26 pages, 5 figure
- …
