66 research outputs found
Select Committee on Wind Turbines final report
The committee recommends the Commonwealth Government create an Independent Expert Scientific Committee on Industrial Sound responsible for providing research and advice to the Minister for the Environment on the impact on human health of audible noise (including low frequency) and infrasound from wind turbines.
Recommendation 1: final
6.5 The committee recommends that an Independent Expert Scientific Committee on Industrial Sound (IESC) be established by law, through provisions similar to those which provide for the Independent Expert Scientific Committee on Coal Seam Gas and Large Coal Mining Development.
6.6 The provisions establishing the IESC on Industrial Sound should state that the Scientific Committee must conduct \u27independent, multi-disciplinary research into the adverse impacts and risks to individual and community health and wellbeing associated with wind turbine projects and any other industrial projects which emit sound and vibration energy\u27
Recommended from our members
Development of Low-Cost Austenitic Stainless Gas-Turbine and Diesel Engine Components with Enhanced High-Temperature Reliability
In July of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Solar Turbines, Inc. and Caterpillar, Inc. (Caterpillar Technical Center) to evaluate commercial cast stainless steels for gas turbine engine and diesel engine exhaust component applications relative to the materials currently being used. If appropriate, the goal was to develop cast stainless steels with improved performance and reliability rather than switch to more costly cast Ni-based superalloys for upgraded performance. The gas-turbine components considered for the Mercury-50 engine were the combustor housing and end-cover, and the center-frame hot-plate, both made from commercial CF8C cast austenitic stainless steel (Fe-l9Cr-12Ni-Nb,C), which is generally limited to use at below 650 C. The advanced diesel engine components considered for truck applications (C10, C12, 3300 and 3400) were the exhaust manifold and turbocharger housing made from commercial high SiMo ductile cast iron with uses limited to 700-750 C or below. Shortly after the start of the CRADA, the turbine materials emphasis changed to wrought 347H stainless steel (hot-plate) and after some initial baseline tensile and creep testing, it was confirmed that this material was typical of those comprising the abundant database; and by 2000, the emphasis of the CRADA was primarily on diesel engine materials. For the diesel applications, commercial SiMo cast iron and standard cast CN12 austenitic stainless steel (Fe-25Cr-13Ni-Nb,C,N,S) baseline materials were obtained commercially. Tensile and creep testing from room temperature to 900 C showed the CN12 austenitic stainless steel to have far superior strength compared to SiMo cast iron above 550 C, together with outstanding oxidation resistance. However, aging at 850 C reduced room-temperature ductility of the standard CN12, and creep-rupture resistance at 850 C was less than expected, which triggered a focused laboratory-scale alloy development effort on modified cast austenitic stainless steels at ORNL. Isothermal fatigue testing at 700 C also showed that standard CN12 was far superior to SiMo cast iron, but somewhat less than the desired behavior. During the first year, 3 new modified CF8C heats and 8 new modified CN12 heats were made, based on compositional changes specifically designed to change the nature, dispersion and stability of the as-cast and high-temperature aging-induced microstructures that consisted of carbides and other precipitate phases. Screening of the alloys at room-temperature and at 850 C (tensile and creep-rupture) showed -a ten-fold increase in rupture life of the best modified CN12 relative to the baseline material, better room-temperature ductility after aging, caused by less precipitation in the as-cast material and much less aging-induced precipitation. The best new modified CF8C steel showed strength at tensile and creep-rupture strength comparable to standard CN12 steel at 850 C, due to a unique and very stable microstructure. The CRADA was scheduled to end in July 2001, but was extended twice until July 2002. Based on the very positive results on the newly developed modified CF8C and CN12 cast austenitic stainless steels, a new CRADA with Caterpillar has been set up to commercially scale-up, test and evaluate, and make trial components from the new steels
Life cycle assessment of the Seagen marine current turbine
The world's first commercial‐scale grid‐connected tidal current energy installation will feature the Seagen marine current turbine developed by Marine Current Turbines Ltd. With potential for the manufacture of significant numbers of such devices there is a need to assess their environmental impact and, in particular, their life cycle energy and carbon dioxide (CO2) performance. This paper presents an analysis of the life cycle energy use and CO2 emissions associated with the first generation of Seagen turbines. The detailed assessment covers the embodied energy and CO2 in the materials and manufacturing of components, device installation, and operation along with those for decommissioning. With relatively conservative assumptions, and despite the early stage of development, the study shows that at 214 kJ/kWh and 15 g CO2/kWh, the respective energy and carbon intensities are comparable with large wind turbines and very low relative to the 400 to 1000 g CO2/kWh typical of fossil‐fuelled generation. The energy payback period is approximately 14 months and the CO2 payback is around 8 months. The embodied energy and carbon show limited sensitivity to assumptions with environmental performance remains excellent even under the most adverse scenarios considered. Materials use is identified as the primary contributors to embodied energy and carbon with shipping also significant. Improvements in the environmental impact of the Seagen can be achieved primarily by increased structural efficiency and the use of alternative installation methods to increase recovery of steel at decommissioning
Recommended from our members
NACA Technical Notes
Note presenting the results of a series of investigations conducted by various laboratories which has led to a nomenclature with definitions of various turbine parameters and a consistent set of physical constants
- …
