5,249 research outputs found

    Magnetoplasmadynamic thruster flows: Problems and progress

    Get PDF
    The topics are presented in viewgraph form and include the following: overall strategy for magnetoplasmadynamic (MPD) thruster development; high power MPD flows; moderate power MPD thrusters and components; qualitative spectroscopic studies of magnetic nozzle flow; hollow cathode studies; and anode flow studies

    Emergence of a collective crystal in a classical system with long-range interactions

    Get PDF
    A one-dimensional long-range model of classical rotators with an extended degree of complexity, as compared to paradigmatic long-range systems, is introduced and studied. Working at constant density, in the thermodynamic limit one can prove the statistical equivalence with the Hamiltonian Mean Field model (HMF) and α\alpha-HMF: a second order phase transition is indeed observed at the critical energy threshold εc=0.75\varepsilon_c=0.75. Conversely, when the thermodynamic limit is performed at infinite density (while keeping the length of the hosting interval LL constant), the critical energy εc\varepsilon_c is modulated as a function of LL. At low energy, a self-organized collective crystal phase is reported to emerge, which converges to a perfect crystal in the limit ϵ0\epsilon \rightarrow 0. To analyze the phenomenon, the equilibrium one particle density function is analytically computed by maximizing the entropy. The transition and the associated critical energy between the gaseous and the crystal phase is computed. Molecular dynamics show that the crystal phase is apparently split into two distinct regimes, depending on the the energy per particle ε\varepsilon. For small ε\varepsilon, particles are exactly located on the lattice sites; above an energy threshold ε\varepsilon{*}, particles can travel from one site to another. However, ε\varepsilon{*} does not signal a phase transition but reflects the finite time of observation: the perfect crystal observed for ε>0\varepsilon >0 corresponds to a long lasting dynamical transient, whose life time increases when the ε>0\varepsilon >0 approaches zero.Comment: 6 pages, 4 figure

    Linguistically Motivated Vocabulary Reduction for Neural Machine Translation from Turkish to English

    Get PDF
    The necessity of using a fixed-size word vocabulary in order to control the model complexity in state-of-the-art neural machine translation (NMT) systems is an important bottleneck on performance, especially for morphologically rich languages. Conventional methods that aim to overcome this problem by using sub-word or character-level representations solely rely on statistics and disregard the linguistic properties of words, which leads to interruptions in the word structure and causes semantic and syntactic losses. In this paper, we propose a new vocabulary reduction method for NMT, which can reduce the vocabulary of a given input corpus at any rate while also considering the morphological properties of the language. Our method is based on unsupervised morphology learning and can be, in principle, used for pre-processing any language pair. We also present an alternative word segmentation method based on supervised morphological analysis, which aids us in measuring the accuracy of our model. We evaluate our method in Turkish-to-English NMT task where the input language is morphologically rich and agglutinative. We analyze different representation methods in terms of translation accuracy as well as the semantic and syntactic properties of the generated output. Our method obtains a significant improvement of 2.3 BLEU points over the conventional vocabulary reduction technique, showing that it can provide better accuracy in open vocabulary translation of morphologically rich languages.Comment: The 20th Annual Conference of the European Association for Machine Translation (EAMT), Research Paper, 12 page

    Towards an automatic system for monitoring of CN2 and wind speed profiles with GeMS

    Get PDF
    Wide Field Adaptive Optics (WFAO) systems represent the more sophisticated AO systems available today at large telescopes. A critical aspect for these WFAO systems in order to deliver an optimised performance is the knowledge of the vertical spatiotemporal distribution of the CN2 and the wind speed. Previous studies (Cortes et al., 2012) already proved the ability of GeMS (the Gemini Multi-Conjugated AO system) in retrieving CN2 and wind vertical stratification using the telemetry data. To assess the reliability of the GeMS wind speed estimates a preliminary study (Neichel et al., 2014) compared wind speed retrieved from GeMS with that obtained with the atmospherical model Meso-Nh on a small sample of nights providing promising results. The latter technique is very reliable for the wind speed vertical stratification. The model outputs gave, indeed, an excellent agreement with a large sample of radiosoundings (~ 50) both in statistical terms and on individual flights (Masciadri et al., 2013). Such a tool can therefore be used as a valuable reference in this exercise of cross calibrating GeMS on-sky wind estimates with model predictions. In this contribution we achieved a two-fold results: (1) we extended analysis on a much richer statistical sample (~ 43 nights), we confirmed the preliminary results and we found an even better correlation between GeMS observations and the atmospherical model with basically no cases of not-negligible uncertainties; (2) we evaluate the possibility to use, as an input for GeMS, the Meso-Nh estimates of the wind speed stratification in an operational configuration. Under this configuration these estimates can be provided many hours in advanced with respect to the observations and with a very high temporal frequency (order of 2 minutes or less).Comment: 12 pages, 7 figures, Proc. SPIE 9909 "Adaptive Optics Systems V", 99093B, 201

    Acquisto e godimento dell'abitazione familiare tra norme di favore e imposizione patrimoniale

    Get PDF
    L'articolo tratta del regime fiscale dell'acquisto e del possesso dell'abitazione familiare, illustrandone i caratteri e valutandone i diversi aspetti problematici

    Optical turbulence forecast in the Adaptive Optics realm

    Full text link
    (35-words maximum) In this talk I present the scientific drivers related to the optical turbulence forecast applied to the ground-based astronomy supported by Adaptive Optics, the state of the art of the achieved results and the most relevant challenges for future progresses.Comment: 1 figure, Orlando, Florida United States, 25 - 28 June 2018, ISBN: 978-1-943580-44-6,Turbulence & Propagation, JW5I.1 Adaptive Optics: Analysis, Methods and System

    Towards an automatic wind speed and direction profiler for Wide Field AO systems

    Get PDF
    Wide Field Adaptive Optics (WFAO) systems are among the most sophisticated AO systems available today on large telescopes. The knowledge of the vertical spatio-temporal distribution of the wind speed (WS) and direction (WD) are fundamental to optimize the performance of such systems. Previous studies already proved that the Gemini Multi-Conjugated AO system (GeMS) is able to retrieve measurements of the WS and WD stratification using the SLODAR technique and to store measurements in the telemetry data. In order to assess the reliability of these estimates and of the SLODAR technique applied to such a kind of complex AO systems, in this study we compared WS and WD retrieved from GeMS with those obtained with the atmospherical model Meso-Nh on a rich statistical sample of nights. It has been previously proved that, the latter technique, provided an excellent agreement with a large sample of radiosoundings both, in statistical terms and on individual flights. It can be considered, therefore, as an independent reference. The excellent agreement between GeMS measurements and the model that we find in this study, proves the robustness of the SLODAR approach. To by-pass the complex procedures necessary to achieve automatic measurements of the wind with GeMS, we propose a simple automatic method to monitor nightly WS and WD using the Meso-Nh model estimates. Such a method can be applied to whatever present or new generation facilities supported by WFAO systems. The interest of this study is, therefore, well beyond the optimization of GeMS performance.Comment: 9 figures, 2 tables, MNRAS accepte

    Automatic Quality Estimation for ASR System Combination

    Get PDF
    Recognizer Output Voting Error Reduction (ROVER) has been widely used for system combination in automatic speech recognition (ASR). In order to select the most appropriate words to insert at each position in the output transcriptions, some ROVER extensions rely on critical information such as confidence scores and other ASR decoder features. This information, which is not always available, highly depends on the decoding process and sometimes tends to over estimate the real quality of the recognized words. In this paper we propose a novel variant of ROVER that takes advantage of ASR quality estimation (QE) for ranking the transcriptions at "segment level" instead of: i) relying on confidence scores, or ii) feeding ROVER with randomly ordered hypotheses. We first introduce an effective set of features to compensate for the absence of ASR decoder information. Then, we apply QE techniques to perform accurate hypothesis ranking at segment-level before starting the fusion process. The evaluation is carried out on two different tasks, in which we respectively combine hypotheses coming from independent ASR systems and multi-microphone recordings. In both tasks, it is assumed that the ASR decoder information is not available. The proposed approach significantly outperforms standard ROVER and it is competitive with two strong oracles that e xploit prior knowledge about the real quality of the hypotheses to be combined. Compared to standard ROVER, the abs olute WER improvements in the two evaluation scenarios range from 0.5% to 7.3%

    Phase transformation B1 to B2 in TiC, TiN, ZrC and ZrN under pressure

    Full text link
    Phase stability of various phases of MX (M = Ti, Zr; X = C, N) at equilibrium and under pressure is examined based on first-principles calculations of the electronic and phonon structures. The results reveal that all B1 (NaCl-type) MX structures undergo a phase transition to the B2-structures under high pressure in agreement with the previous total-energy calculations. The B1-MX structures are dynamically stable under very high pressure (210-570 GPa). The pressure-induced B2 (CsCl-type) MC phases are dynamically unstable even at high pressures, and TiN and ZrN are found to crystallize with the B2-structure only at pressures above 55 GPa. The first-order B1-to-B2 phase transition in these nitrides is not related to the softening of phonon modes, and the dynamical instability of B2-MX is associated with a high density of states at the Fermi level.Comment: 9 pages, 4 figure
    corecore