365 research outputs found

    Human mesenchymal stem cells labelled with dye-loaded amorphous silica nanoparticles: long-term biosafety, stemness preservation and traceability in the beating heart

    Get PDF
    Treatment of myocardial infarction with mesenchymal stem cells (MSCs) has proven beneficial effects in both animal and clinical studies. Engineered silica nanoparticles (SiO2-NPs) have been extensively used as contrast agents in regenerative medicine, due to their resistance to degradation and ease of functionalization. However, there are still controversies on their effective biosafety on cellular systems. In this perspective, the aims of the present study are: 1) to deeply investigate the impact of amorphous 50 nm SiO2-NPs on viability and function of human bone marrow-derived MSCs (hMSCs); 2) to optimize a protocol of harmless hMSCs labelling and test its feasibility in a beating heart model. Optimal cell labelling is obtained after 16 h exposure of hMSCs to fluorescent 50 nm SiO2-NPs (50 µg mL(-1)); interestingly, lysosomal activation consequent to NPs storage is not associated to oxidative stress. During prolonged culture hMSCs do not undergo cyto- or genotoxicity, preserve their proliferative potential and their stemness/differentiation properties. Finally, the bright fluorescence emitted by internalized SiO2-NPs allows both clear visualization of hMSCs in normal and infarcted rat hearts and ultrastructural analysis of cell engraftment inside myocardial tissue. Overall, 50 nm SiO2-NPs display elevated compatibility with hMSCs in terms of lack of cyto- and genotoxicity and maintenance of important features of these cells. The demonstrated biosafety, combined with proper cell labelling and visualization in histological sections, make these SiO2-NPs optimal candidates for the purpose of stem cell tracking inside heart tissue

    Multiple facets of histone variant H2AX: a DNA double-strand-break marker with several biological functions

    Get PDF
    In the last decade, many papers highlighted that the histone variant H2AX and its phosphorylation on Ser 139 (γH2AX) cannot be simply considered a specific DNA double-strand-break (DSB) marker with a role restricted to the DNA damage response, but rather as a ‘protagonist’ in different scenarios. This review will present and discuss an up-to-date view regarding the ‘non-canonical’ H2AX roles, focusing in particular on possible functional and structural parts in contexts different from the canonical DNA DSB response. We will present aspects concerning sex chromosome inactivation in male germ cells, X inactivation in female somatic cells and mitosis, but will also focus on the more recent studies regarding embryonic and neural stem cell development, asymmetric sister chromosome segregation in stem cells and cellular senescence maintenance. We will discuss whether in these new contexts there might be a relation with the canonical DNA DSB signalling function that could justify γH2AX formation. The authors will emphasize that, just as H2AX phosphorylation signals chromatin alteration and serves the canonical function of recruiting DSB repair factors, so the modification of H2AX in contexts other than the DNA damage response may contribute towards creating a specific chromatin structure frame allowing ‘non-canonical’ functions to be carried out in different cell types

    Induced Pluripotent Stem Cells: Advances in the Quest for Genetic Stability during Reprogramming Process.

    Get PDF
    Evaluation of the extent and nature of induced pluripotent stem cell (iPSC) genetic instability is important for both basic research and future clinical use. As previously demonstrated regarding embryonic stem cells, such DNA aberrations might affect the differentiation capacity of the cells and increase their tumorigenicity. Here, we first focus on the contribution of multiple DNA damage response pathways during cellular reprogramming. We then discuss the origin and mechanisms responsible for the modification of genetic material in iPSCs (pre-existing variations in somatic cells, mutations induced by reprogramming factors, and mutations induced by culture expansion) and deepen the possible functional consequences of genetic variations in these cells. Lastly, we present some recent improvements of iPSC generation methods aimed at obtaining cells with fewer genetic variations

    Senescence in human mesenchymal stem cells: Functional changes and implications in stem cell-based therapy

    Get PDF
    Regenerative medicine is extensively interested in developing cell therapies using mesenchymal stem cells (MSCs), with applications to several aging-associated diseases. For successful therapies, a substantial number of cells are needed, requiring extensive ex vivo cell expansion. However, MSC proliferation is limited and it is quite likely that long-term culture evokes continuous changes in MSCs. Therefore, a substantial proportion of cells may undergo senescence. In the present review, we will first present the phenotypic characterization of senescent human MSCs (hMSCs) and their possible consequent functional alterations. The accumulation of oxidative stress and dysregulation of key differentiation regulatory factors determine decreased differentiation potential of senescent hMSCs. Senescent hMSCs also show a marked impairment in their migratory and homing ability. Finally, many factors present in the secretome of senescent hMSCs are able to exacerbate the inflammatory response at a systemic level, decreasing the immune modulation activity of hMSCs and promoting either proliferation or migration of cancer cells. Considering the deleterious effects that these changes could evoke, it would appear of primary importance to monitor the occurrence of senescent phenotype in clinically expanded hMSCs and to evaluate possible ways to prevent in vitro MSC senescence. An updated critical presentation of the possible strategies for in vitro senescence monitoring and prevention constitutes the second part of this review. Understanding the mechanisms that drive toward hMSC growth arrest and evaluating how to counteract these for preserving a functional stem cell pool is of fundamental importance for the development of efficient cell-based therapeutic approaches

    From Italy: value as an attitude

    Get PDF
    Nowadays the variety of product and service has been coded as new assets to identify culture and knowledge. The process to the conclusive brand is costitued by a sequence of values from conception to raw material’s choice, next to product engineering till market release. This overview enhance the role of suppliers, contractors and licensees regarding their qualitative and distinctive contribution. It makes them key players in the productive network of value providing uncommon opportunities of visibility. To reinforce the concept of being italian gleans from a versatile collection through knowledge, brilliance and, especially, evaluation: to make the most of our culture, accuracy, experience and thinking. Shifting the focus from the traditional and stumbling label of Made in Italy to the most modern and all-embracing exception of From Italy, it is possible to continue fascinating new wealthy markets with unique results. It diverts experience from the Showcase Country to the Atelier Country

    Emozionare per vendere

    Get PDF

    Stem cell tracking with nanoparticles for regenerative medicine purposes: An overview

    Get PDF
    Accurate and noninvasive stem cell tracking is one of the most important needs in regenerative medicine to determine both stem cell destinations and final differentiation fates, thus allowing a more detailed picture of the mechanisms involved in these therapies. Given the great importance and advances in the field of nanotechnology for stem cell imaging, currently, several nanoparticles have become standardized products and have been undergoing fast commercialization. This review has been intended to summarize the current use of different engineered nanoparticles in stem cell tracking for regenerative medicine purposes, in particular by detailing their main features and exploring their biosafety aspects, the first step for clinical application. Moreover, this review has summarized the advantages and applications of stem cell tracking with nanoparticles in experimental and preclinical studies and investigated present limitations for their employment in the clinical setting

    "Made in Italy" e design. Costruire il brand moda

    Full text link

    Analysis of alternative lengthening of telomere markers in BRCA1 defective cells

    Get PDF
    Telomeres are specialized structures responsible for the chromosome end protection. Previous studies have revealed that defective BRCA1 may lead to elevated telomere fusions and accelerated telomere shortening. In addition, BRCA1 associates with promyelocytic leukemia (PML) bodies in alternative lengthening of telomeres (ALTs) positive cells. We report here elevated recombination rates at telomeres in cells from human BRCA1 mutation carriers and in mouse embryonic stem cells lacking both copies of functional Brca1. An increased recombination rate at telomeres is one of the signs of ALT. To investigate this possibility further we employed the C-circle assay that identifies ALT unequivocally. Our results revealed elevated levels of ALT activity in Brca1 defective mouse cells. Similar results were obtained when the same cells were assayed for the presence of another ALT marker, namely the frequency of PML bodies. These results suggest that BRCA1 may act as a repressor of ALT.We acknowledge Dr Amir Hassan-Khani from Bent-Al-Hoda Hospital Mashhad, Iran, for partly funding Parisa K Kargaran. Supported in part by a grant from the DoReMi consortium, EC
    corecore