612 research outputs found
Source contributions to 2012 summertime aerosols in the Euro-Mediterranean region
International audienceIn the Mediterranean area, aerosols may originate from anthropogenic or natural emissions (biogenic, mineral dust, fire and sea salt) before undergoing complex chemistry. In case of a huge pollution event, it is important to know whether European pollution limits are exceeded and, if so, whether the pollution is due to anthropogenic or natural sources. In this study, the relative contribution of emissions to surface PM10, surface PM2.5 and total aerosol optical depth (AOD) is quantified. For Europe and the Mediterranean regions and during the summer of 2012, the WRF and CHIMERE models are used to perform a sensitivity analysis on a 50 km resolution domain (from −10° W to 40° E and from 30° N to 55° N): one simulation with all sources (reference) and all others with one source removed. The reference simulation is compared to data from the AirBase network and two ChArMEx stations, and from the AERONET network and the MODIS satellite instrument, to quantify the ability of the model to reproduce the observations. It is shown that the correlation ranges from 0.19 to 0.57 for surface particulate matter and from 0.35 to 0.75 for AOD. For the summer of 2012, the model shows that the region is mainly influenced by aerosols due to mineral dust and anthropogenic emissions (62 and 19 %, respectively, of total surface PM10 and 17 and 52 % of total surface PM2.5). The western part of the Mediterranean is strongly influenced by mineral dust emissions (86 % for surface PM10 and 44 % for PM2.5), while anthropogenic emissions dominate in the northern Mediterranean basin (up to 75 % for PM2.5). Fire emissions are more sporadic but may represent 20 % of surface PM2.5, on average, during the period near local sources. Sea salt mainly contributes for coastal sites (up to 29 %) and biogenic emissions mainly in central Europe (up to 20 %)
Lidar signal simulation for the evaluation of aerosols in chemistry transport models
International audienceWe present an adaptable tool, the OPTSIM (OPTical properties SIMulation) software, for the simulation of optical properties and lidar attenuated backscattered profiles (beta') from aerosol concentrations calculated by chemistry transport models (CTM). It was developed to model both Level 1 observations and Level 2 aerosol lidar retrievals in order to compare model results to measurements: the level 2 enables to estimate the main properties of aerosols plume structures, but may be limited due to specific assumptions. The level 1, originally developed for this tool, gives access to more information about aerosols properties (beta') requiring, at the same time, less hypothesis on aerosols types. In addition to an evaluation of the aerosol loading and optical properties, active remote sensing allows the analysis of aerosols' vertical structures. An academic case study for two different species (black carbon and dust) is presented and shows the consistency of the simulator. Illustrations are then given through the analysis of dust events in the Mediterranean region during the summer 2007. These are based on simulations by the CHIMERE regional CTM and observations from the CALIOP space-based lidar, and highlight the potential of this approach to evaluate the concentration, size and vertical structure of the aerosol plumes
Forms of machines, forms of movement
Diffusé avec l’accord des Éditions Amsterdam University Press, détentrices des droits d’auteur sur ce texte
Recommended from our members
North American Influence on Tropospheric Ozone and the Effects of Recent Emission Reductions: Constraints from ICARTT Observations
We use observations from the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) campaign over eastern North America in summer 2004, interpreted with a global 3‐D model of tropospheric chemistry (GEOS‐Chem), to improve and update estimates of North American influence on global tropospheric ozone and the effect of recent U.S. anthropogenic reductions on surface ozone pollution. We find that the 50% decrease in U.S. stationary NOx sources since 1999 has decreased mean U.S. boundary layer ozone concentrations by 6–8 ppbv in the southeast and 4–6 ppbv in the Midwest. The observed dO3/dCO molar enhancement ratio in the U.S. boundary layer during ICARTT was 0.46 mol mol−1, larger than the range of 0.3–0.4 from studies in the early 1990s, possibly reflecting the decrease in the NOx/CO emission ratio as well as an increase in the ozone production efficiency per unit NOx. North American NOx emissions during summer 2004 as constrained by the ICARTT observations (0.72 Tg N fossil fuel, 0.11 Tg N biomass burning, 0.28 Tg N lightning for 1 July to 15 August) enhanced the hemispheric tropospheric ozone burden by 12.4%, with comparable contributions from fossil fuel and lightning (5–6%), but only 1% from biomass burning emissions despite 2004 being a record fire year over Alaska and western Canada.Earth and Planetary Science
Recommended from our members
Biogenic Versus Anthropogenic Sources of CO in the United States
Aircraft observations of carbon monoxide (CO) from the ICARTT campaign over the eastern United States in summer 2004 (July 1–August 15), interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem), show that the national anthropogenic emission inventory from the U.S. Environmental Protection Agency (93 Tg CO y−1) is too high by 60% in summer. Our best estimate of the CO anthropogenic source for the ICARTT period is 6.4 Tg CO, including 4.6 Tg from direct emission and 1.8 Tg CO from oxidation of anthropogenic volatile organic compounds (VOCs). The biogenic CO source for the same period from the oxidation of isoprene and other biogenic VOCs is 8.3 Tg CO, and is independently constrained by ICARTT observations of formaldehyde (HCHO). Anthropogenic emissions of CO in the U.S. have decreased to the point that they are now lower than the biogenic source in summer.Earth and Planetary SciencesEngineering and Applied Science
Inventing Cinema
With machines mediating most of our cultural practices, and innovations, obsolescence and revivals constantly transforming our relation with images and sounds, media feel more unstable than ever. But was there ever a ‘stable’ moment in media history? *Inventing Cinema* proposes to approach this question through an archaeology and epistemology of media machines. The archaeology analyses them as archives of users’ gestures, as well as of modes of perception. The epistemology reconstructs the problems that the machines’ designers and users have strived to solve, and the network of concepts they have elaborated to understand these problems. Drawing on the philosophy of technology and anthropology, *Inventing Cinema* argues that networks of gestures, problems, perception and concepts are inscribed in vision machines, from the camera obscura to the stereoscope, the Cinématographe, and digital cinema. The invention of cinema is ultimately seen as an ongoing process irreducible to a single moment in history
Surface and lightning sources of nitrogen oxides over the United States: Magnitudes, chemical evolution, and outflow
We use observations from two aircraft during the ICARTT campaign over the eastern United States and North Atlantic during summer 2004, interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem) to test current understanding of regional sources, chemical evolution, and export of NOx. The boundary layer NOx data provide top-down verification of a 50% decrease in power plant and industry NOx emissions over the eastern United States between 1999 and 2004. Observed NOx concentrations at 8–12 km altitude were 0.55 ± 0.36 ppbv, much larger than in previous U.S. aircraft campaigns (ELCHEM, SUCCESS, SONEX) though consistent with data from the NOXAR program aboard commercial aircraft. We show that regional lightning is the dominant source of this upper tropospheric NOx and increases upper tropospheric ozone by 10 ppbv. Simulating ICARTT upper tropospheric NOx observations with GEOS-Chem requires a factor of 4 increase in modeled NOx yield per flash (to 500 mol/ flash). Observed OH concentrations were a factor of 2 lower than can be explained from current photochemical models, for reasons that are unclear. A NOy-CO correlation analysis of the fraction f of North American NOx emissions vented to the free troposphere as NOy (sum of NOx and its oxidation products) shows observed f = 16 ± 10% and modeled f = 14 ± 9%, consistent with previous studies. Export to the lower free troposphere is mostly HNO3 but at higher altitudes is mostly PAN. The model successfully simulates NOy export efficiency and speciation, supporting previous model estimates of a large U.S. anthropogenic contribution to global tropospheric ozone through PAN export
Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007
International audienceThe hot summer of 2007 in southeast Europe has been studied using two regional atmospheric chemistry models; WRF-Chem and EMEP MSC-W. The region was struck by three heat waves and a number of forest fire episodes, greatly affecting air pollution levels. We have focused on ozone and its precursors using state-of-the-art inventories for anthropogenic, biogenic and forest fire emissions. The models have been evaluated against measurement data, and processes leading to ozone formation have been quantified. Heat wave episodes are projected to occur more frequently in a future climate, and therefore this study also makes a contribution to climate change impact research. The plume from the Greek forest fires in August 2007 is clearly seen in satellite observations of CO and NO2 columns, showing extreme levels of CO in and downwindof the fires. Model simulations reflect the location and influence of the fires relatively well, but the modelled magnitude of CO in the plume core is too low. Most likely, this is caused by underestimation of CO in the emission inventories, suggesting that the CO/NOx ratios of fire emissions should be re-assessed. Moreover, higher maximum values are seen in WRF-Chem than in EMEP MSC-W, presumably due to differences in plume rise altitudes as the first model emits a larger fraction of the fire emissions in the lowermost model layer. The model results are also in fairly good agreement with surface ozone measurements. Biogenic VOC emissions reacting with anthropogenic NOx emissions are calculated to contribute significantly to the levels of ozone in the region, but the magnitude and geographical distribution depend strongly on the model and biogenic emission module used. During the July and August heat waves, ozone levels increased substantially due to a combination of forest fire emissions and the effect of high temperatures. We found that the largest temperature impact on ozone was through the temperature dependence of the biogenic emissions, closely followed by the effect of reduced dry deposiion caused by closing of the plants' stomata at very high temperatures. The impact of high temperatures on the ozone chemistry was much lower. The results suggest that forest fire emissions, and the temperature effect on biogenic emissions and dry deposition, will potentially lead to substantial ozone increases in a warmer climate
Tracking the emission and transport of pollution from wildfires using the IASI CO retrievals: analysis of the summer 2007 Greek fires
International audienceIn this paper, we analyze the performance of the Infrared Atmospheric Sounding Interferometer (IASI), launched in October 2006 on board METOP-A, for the monitoring of carbon monoxide (CO) during extreme fire events, focusing on the record-breaking fires which devastated thousands of square kilometers of forest in Greece during the last week (23–30) of August 2007. After an assessment of the quality of the profiles retrieved using the Fast Optimal Retrievals on Layers for IASI (FORLI) algorithm, the information provided on fire emissions and subsequent pollution outflow is discussed. Large CO plumes were observed above the Mediterranean Basin and North Africa, with total CO columns exceeding 24×1018 molecules/cm2 and absolute volume mixing ratios up to 4 ppmv on the 25 August. Up to 30×1018 molecules/cm2 and 22 ppmv in the lower troposphere are retrieved close to the fires above the Peloponnese, but with larger uncertainty. The average root-mean-square (RMS) difference between simulated and observed spectra is close to the estimated radiometric noise level, slightly increasing (by ~14%) in the fresh fire plumes. CO profiles are retrieved with a vertical resolution of about 8 km, with ~1.7 pieces of independent information on the vertical in the region considered and a maximum sensitivity in the free troposphere (~4–5 km). Using the integrated total amount, the increase in CO burden due to these fires is estimated to 0.321 Tg, ~40% of the total annual anthropogenic emissions in Greece. The patterns of these CO enhancements are in good agreement with the aerosol optical depth (AOD) retrieved from the MODIS measurements, highlighting a rapid transport of trace gases and aerosols across the Mediterranean Basin (less than one day). While the coarse vertical resolution will not allow the location of the exact plume height, the large CO enhancements observed in the lower troposphere are consistent with the maximum aerosol backscatter coefficient at ~2 km detected by the CALIPSO lidar in space (CALIOP)
- …
