290 research outputs found

    Off-central acceptor impurity in a spherical quantum dot

    Full text link
    The hole energy spectrum with the ion of an acceptor impurity in the quantum dot has been calculated using the spherical approximation of the multiband Luttinger model. The dependence of the hole energy levels on the impurity location in the quantum dot has been studied. The effect of the impurity location on the dipole momentum and the oscillator strength has been analyzed. The hole interlevel absorption coefficient has been calculated.Comment: 10 pages, 5 figure

    Mobility enhancement of CVD graphene by spatially correlated charges

    Get PDF
    The manuscript presents a strategy for enhancing the carrier mobility of single layer CVD graphene (CVD SLG) based on spatially correlated charges. Our Monte Carlo simulations, numerical modeling and the experimental results confirm that spatial correlation between defects with opposite charges can provide a means to control independently the carrier concentration and mobility of planar field effect transistors in which graphene is decorated with a layer of colloidal quantum dots (QDs). We show that the spatial correlation between electrically charged scattering centres close to the graphene/SiO2 interface and the localised charges in a QD layer can smooth out the electrostatic potential landscape, thus reducing scattering and enhancing the carrier mobility. The QD capping molecules influence the distribution and correlation of electrical charges in the vicinity of SLG and provide a means of tuning the carrier concentration and increasing the carrier mobility in graphene. These results represent a significant conceptual advance and provide a novel strategy for control of the electronic properties of 2D materials that could accelerate their utilization in optoelectronic devices

    Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots

    Get PDF
    The authors report the temperature dependence of the near-infrared photoluminescence (PL) emission from thiol-capped PbS quantum dots. The high thermal stability of the PL allows the authors to study the thermal broadening of the dot emission over an extended temperature range (4-300 K). The authors show that the linewidth of the dot PL emission is strongly enhanced at temperatures above 150 K. This behavior is attributed to dephasing of the quantum electronic states by carrier interaction with longitudinal optical phonons. The authors' data also indicate that the strength of the carrier-phonon coupling is larger in smaller dots. © 2007 American Institute of Physics

    Paramagnetic, near-infrared fluorescent Mn-doped PbS colloidal nanocrystals

    Get PDF
    Mn-doped PbS colloidal nanocrystals in aqueous solution are paramagnetic and optically active in the technologically important biological window between 1.2 and 0.8 μm. Cytoxicity studies show that exposure of human cell lines to the nanoparticles at concentrations up to 0.2 mg mL−1 does not induce any adverse effect

    Sharp-line electroluminescence from individual quantum dots by resonant tunneling injection of carriers

    Get PDF
    We report sharp electroluminescence lines from individual self-assembled InAs quantum dots (QDs) excited by resonant tunneling injection of carriers from the n- and p-doped GaAs layers of a p-i-n diode. Bias-tunable tunneling of carriers into the dots provides a means of controlling injection and light emission from a small number of individual dots within a large ensemble. We also show that the extent of carrier energy relaxation prior to recombination can be controlled by tailoring the morphology of the QD layer. © 2006 American Institute of Physics

    Electron spin coherence near room temperature in magnetic quantum dots

    Get PDF
    We report on an example of confined magnetic ions with long spin coherence near room temperature. This was achieved by confining single Mn2+ spins in colloidal semiconductor quantum dots (QDs) and by dispersing the QDs in a proton-spin free matrix. The controlled suppression of Mn–Mn interactions and minimization of Mn–nuclear spin dipolar interactions result in unprecedentedly long phase memory (TM ~ 8 μs) and spin–lattice relaxation (T1 ~ 10 ms) time constants for Mn2+ ions at T = 4.5 K, and in electron spin coherence observable near room temperature (TM ~ 1 μs)

    Spin manipulation and spin-lattice interaction in magnetic colloidal quantum dots

    Get PDF
    We report on the spin-lattice interaction and coherent manipulation of electron spins in Mn-doped colloidal PbS quantum dots (QDs) by electron spin resonance. We show that the phase memory time,TM, is limited by Mn-Mn dipolar interactions, hyperfine interactions of the protons (H1) on the QD capping ligands with Mn ions in their proximity (<1 nm), and surface phonons originating from thermal fluctuations of the capping ligands. In the low Mn concentration limit and at low temperature, we achieve a long phase memory time constant TM�0.9μs, thus enabling the observation of Rabi oscillations. Our findings suggest routes to the rational design of magnetic colloidal QDs with phase memory times exceeding the current limits of relevance for the implementation of QDs as qubits in quantum information processing. © Published by the American Physical Society
    corecore