1,981 research outputs found

    Investigating the TeV Morphology of MGRO J1908+06 with VERITAS

    Full text link
    We report on deep observations of the extended TeV gamma-ray source MGRO J1908+06 made with the VERITAS very high energy (VHE) gamma-ray observatory. Previously, the TeV emission has been attributed to the pulsar wind nebula (PWN) of the Fermi-LAT pulsar PSR J1907+0602. We detect MGRO J1908+06 at a significance level of 14 standard deviations (14 sigma) and measure a photon index of 2.20 +/- 0.10_stat +/- 0.20_sys. The TeV emission is extended, covering the region near PSR J1907+0602 and also extending towards SNR G40.5--0.5. When fitted with a 2-dimensional Gaussian, the intrinsic extension has a standard deviation of sigma_src = 0.44 +/- 0.02 degrees. In contrast to other TeV PWNe of similar age in which the TeV spectrum softens with distance from the pulsar, the TeV spectrum measured near the pulsar location is consistent with that measured at a position near the rim of G40.5--0.5, 0.33 degrees away.Comment: To appear in ApJ, 8 page

    Discovery of Very High Energy Gamma Rays from 1ES 1440+122

    Full text link
    The BL Lacertae object 1ES 1440+122 was observed in the energy range from 85 GeV to 30 TeV by the VERITAS array of imaging atmospheric Cherenkov telescopes. The observations, taken between 2008 May and 2010 June and totalling 53 hours, resulted in the discovery of γ\gamma-ray emission from the blazar, which has a redshift zz=0.163. 1ES 1440+122 is detected at a statistical significance of 5.5 standard deviations above the background with an integral flux of (2.8±0.7stat±0.8sys\pm0.7_{\mathrm{stat}}\pm0.8_{\mathrm{sys}}) ×\times 1012^{-12} cm2^{-2} s1^{-1} (1.2\% of the Crab Nebula's flux) above 200 GeV. The measured spectrum is described well by a power law from 0.2 TeV to 1.3 TeV with a photon index of 3.1 ±\pm 0.4stat_{\mathrm{stat}} ±\pm 0.2sys_{\mathrm{sys}}. Quasi-simultaneous multi-wavelength data from the Fermi Large Area Telescope (0.3--300 GeV) and the Swift X-ray Telescope (0.2--10 keV) are additionally used to model the properties of the emission region. A synchrotron self-Compton model produces a good representation of the multi-wavelength data. Adding an external-Compton or a hadronic component also adequately describes the data.Comment: 8 pages, 4 figures. Accepted for publication in MNRA

    Measurement of Cosmic-ray Electrons at TeV Energies by VERITAS

    Full text link
    Cosmic-ray electrons and positrons (CREs) at GeV-TeV energies are a unique probe of our local Galactic neighborhood. CREs lose energy rapidly via synchrotron radiation and inverse-Compton scattering processes while propagating within the Galaxy and these losses limit their propagation distance. For electrons with TeV energies, the limit is on the order of a kiloparsec. Within that distance there are only a few known astrophysical objects capable of accelerating electrons to such high energies. It is also possible that the CREs are the products of the annihilation or decay of heavy dark matter (DM) particles. VERITAS, an array of imaging air Cherenkov telescopes in southern Arizona, USA, is primarily utilized for gamma-ray astronomy, but also simultaneously collects CREs during all observations. We describe our methods of identifying CREs in VERITAS data and present an energy spectrum, extending from 300 GeV to 5 TeV, obtained from approximately 300 hours of observations. A single power-law fit is ruled out in VERITAS data. We find that the spectrum of CREs is consistent with a broken power law, with a break energy at 710 ±\pm 40stat_{stat} ±\pm 140syst_{syst} GeV.Comment: 17 pages, 2 figures, accepted for publication in PR

    Clubbing masculinities: Gender shifts in gay men's dance floor choreographies

    Get PDF
    This is an Author's Accepted Manuscript of an article published in Journal of Homosexuality, 58(5), 608-625, 2011 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/10.1080/00918369.2011.563660This article adopts an interdisciplinary approach to understanding the intersections of gender, sexuality, and dance. It examines the expressions of sexuality among gay males through culturally popular forms of club dancing. Drawing on political and musical history, I outline an account of how gay men's gendered choreographies changed throughout the 1970s, 80s, and 90s. Through a notion of “technologies of the body,” I situate these developments in relation to cultural levels of homophobia, exploring how masculine expressions are entangled with and regulated by musical structures. My driving hypothesis is that as perceptions of cultural homophobia decrease, popular choreographies of gay men's dance have become more feminine in expression. Exploring this idea in the context of the first decade of the new millennium, I present a case study of TigerHeat, one of the largest weekly gay dance club events in the United States

    Very-High-Energy γ\gamma-Ray Observations of the Blazar 1ES 2344+514 with VERITAS

    Full text link
    We present very-high-energy γ\gamma-ray observations of the BL Lac object 1ES 2344+514 taken by the Very Energetic Radiation Imaging Telescope Array System (VERITAS) between 2007 and 2015. 1ES 2344+514 is detected with a statistical significance above background of 20.8σ20.8\sigma in 47.247.2 hours (livetime) of observations, making this the most comprehensive very-high-energy study of 1ES 2344+514 to date. Using these observations the temporal properties of 1ES 2344+514 are studied on short and long times scales. We fit a constant flux model to nightly- and seasonally-binned light curves and apply a fractional variability test, to determine the stability of the source on different timescales. We reject the constant-flux model for the 2007-2008 and 2014-2015 nightly-binned light curves and for the long-term seasonally-binned light curve at the >3σ> 3\sigma level. The spectra of the time-averaged emission before and after correction for attenuation by the extragalactic background light are obtained. The observed time-averaged spectrum above 200 GeV is satisfactorily fitted (χ2/NDF=7.89/6{\chi^2/NDF = 7.89/6}) by a power-law function with index Γ=2.46±0.06stat±0.20sys\Gamma = 2.46 \pm 0.06_{stat} \pm 0.20_{sys} and extends to at least 8 TeV. The extragalactic-background-light-deabsorbed spectrum is adequately fit (χ2/NDF=6.73/6{\chi^2/NDF = 6.73/6}) by a power-law function with index Γ=2.15±0.06stat±0.20sys\Gamma = 2.15 \pm 0.06_{stat} \pm 0.20_{sys} while an F-test indicates that the power-law with exponential cutoff function provides a marginally-better fit (χ2/NDF\chi^2/NDF = 2.56/52.56 / 5 ) at the 2.1σ\sigma level. The source location is found to be consistent with the published radio location and its spatial extent is consistent with a point source.Comment: 7 pages, 2 figures. Published in Monthly Notices of the Royal Astronomical Societ
    corecore