101 research outputs found

    Next Generation Flexible and Cognitive Heterogeneous Optical Networks:Supporting the Evolution to the Future Internet

    Get PDF
    Optical networking is the cornerstone of the Future Internet as it provides the physical infrastructure of the core backbone networks. Recent developments have enabled much better quality of service/experience for the end users, enabled through the much higher capacities that can be supported. Furthermore, optical networking developments facilitate the reduction of complexity of operations at the IP layer and therefore reduce the latency of the connections and the expenditures to deploy and operate the networks. New research directions in optical networking promise to further advance the capabilities of the Future Internet. In this book chapter, we highlight the latest activities of the optical networking community and in particular what has been the focus of EU funded research. The concepts of flexible and cognitive optical networks are introduced and their key expected benefits are highlighted. The overall framework envisioned for the future cognitive flexible optical networks are introduced and recent developments are presented

    Hemoglobin determination with paired emitter detector diode

    Get PDF
    Two ordinary green light-emitting diodes used as light emitter and detector coupled with simple voltmeter form a complete, cost-effective prototype of a photometric hemoglobinometer. The device has been optimized for cuvette assays of total hemoglobin (Hb) in diluted blood using three different chemical methods recommended for the needs of clinical analysis (namely Drabkin, lauryl sulfate, and dithionite methods). The utility of developed device for real analytics has been validated by the assays of total Hb content in human blood. The results of analysis are fully compatible with those obtained using clinically recommended method and clinical analyzer

    Experimental Demonstration of a Cognitive Optical Network for Reduction of Restoration Time

    Get PDF
    This paper presents the implementation and performance evaluation of a cognitive heterogeneous optical network testbed. The testbed integrates the CMP, the data plane and the cognitive system and reduces by 48% the link restoration time. This paper presents the implementation and performance evaluation of a cognitive heterogeneous optical network testbed. The testbed integrates the CMP, the data plane and the cognitive system and reduces by 48% the link restoration time

    Miniaturized optical chemosensor for flow-based assays

    Get PDF
    A cost-effective, highly compact, and versatile optoelectronic device constructed of two ordinary light emitting diodes compatible with optosensing films has been developed. This fibreless device containing chemoreceptor, semiconductor light source, and detector integrated in a miniaturized flow-through cell of low microliter internal volume works as a complete photometric chemical sensor suitable for detection in flow analysis. The operation of the developed device under nonstationary programmable-flow conditions offered by sequential injection analysis has been demonstrated using Prussian Blue film as a model optical chemoreceptor. The unique spectroelectrochemical properties of the sensing material enable its use for optical sensing of redox species, whereby ascorbic acid and hydrogen peroxide have been chosen as model analytes. The reported SI-sensor system features fast and reproducible determination of both analytes in the submillimolar range of concentrations. The construction concept demonstrated in this work can be easily applied to other kinds of optical sensors based on absorbance sensing films. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00216-010-4384-2) contains supplementary material, which is available to authorized users

    Development and Evaluation of a Miniaturized Taste Sensor Chip

    Get PDF
    A miniaturized taste sensor chip was designed for use in a portable-type taste sensing system. The fabricated sensor chip (40 mm × 26 mm × 2.2 mm) has multiple taste-sensing sites consisting of a poly(hydroxyethyl methacrylate) hydrogel with KCl as the electrolyte layer for stability of the membrane potential and artificial lipid membranes as the taste sensing elements. The sensor responses to the standard taste substances showed high accuracy and good reproducibility, which is comparable with the performance of the sensor probe of the commercialized taste sensing system. Thus, the fabricated taste sensor chip could be used as a key element for the realization of a portable-type taste sensing system

    Microfabricated Reference Electrodes and their Biosensing Applications

    Get PDF
    Over the past two decades, there has been an increasing trend towards miniaturization of both biological and chemical sensors and their integration with miniaturized sample pre-processing and analysis systems. These miniaturized lab-on-chip devices have several functional advantages including low cost, their ability to analyze smaller samples, faster analysis time, suitability for automation, and increased reliability and repeatability. Electrical based sensing methods that transduce biological or chemical signals into the electrical domain are a dominant part of the lab-on-chip devices. A vital part of any electrochemical sensing system is the reference electrode, which is a probe that is capable of measuring the potential on the solution side of an electrochemical interface. Research on miniaturization of this crucial component and analysis of the parameters that affect its performance, stability and lifetime, is sparse. In this paper, we present the basic electrochemistry and thermodynamics of these reference electrodes and illustrate the uses of reference electrodes in electrochemical and biological measurements. Different electrochemical systems that are used as reference electrodes will be presented, and an overview of some contemporary advances in electrode miniaturization and their performance will be provided

    Solid-state reference electrodes based on carbon nanotubes and polyacrylate membranes

    Get PDF
    A novel potentiometric solid-state reference electrode containing single-walled carbon nanotubes as the transducer layer between a polyacrylate membrane and the conductor is reported here. Single-walled carbon nanotubes act as an efficient transducer of the constant potentiometric signal originating from the reference membrane containing the Ag/AgCl/Cl− ions system, and they are needed to obtain a stable reference potentiometric signal. Furthermore, we have taken advantage of the light insensitivity of single-walled carbon nanotubes to improve the analytical performance characteristics of previously reported solid-state reference electrodes. Four different polyacrylate polymers have been selected in order to identify the most efficient reservoir for the Ag/AgCl system. Finally, two different arrangements have been assessed: (1) a solid-state reference electrode using photo-polymerised n-butyl acrylate polymer and (2) a thermo-polymerised methyl methacrylate:n-butyl acrylate (1:10) polymer. The sensitivity to various salts, pH and light, as well as time of response and stability, has been tested: the best results were obtained using single-walled carbon nanotubes and photo-polymerised n-butyl acrylate polymer. Water transport plays an important role in the potentiometric performance of acrylate membranes, so a new screening test method has been developed to qualitatively assess the difference in water percolation between the polyacrylic membranes studied. The results presented here open the way for the true miniaturisation of potentiometric systems using the excellent properties of single-walled carbon nanotubes
    corecore