257 research outputs found

    On the critical character of plasticity in metallic single crystals

    Full text link
    Previous acoustic emission (AE) experiments on ice single crystals, as well as numerical simulations, called for the possible occurrence of self-organized criticality (SOC) in collective dislocation dynamics during plastic deformation. Here, we report AE experiments on hcp metallic single crystals. Dislocation avalanches in relation with slip and twinning are identified with the only sources of AE. Both types of processes exhibit a strong intermittent character. The AE waveforms of slip and twinning events seem to be different, but from the point of view of the AE event energy distributions, no distinction is possible. The distributions always follow a power law, even when multi-slip and forest hardening occur. The power law exponent is in perfect agreement with those previously found in ice single crystals. Along with observed time clustering and interactions between avalanches, these results are new and strong arguments in favour of a general, SOC-type, framework for crystalline plasticity.Comment: 12 pages, 10 figure

    Nanoindentation of Bridgman YBCO samples

    Get PDF
    In this study, the mechanical properties of YBa2Cu3O7−x, obtained by the Bridgman technique, were examined using a Berkovich tip indenter on the basal plane (0 0 1). Intrinsic hardness was measured by nanoindentation tests and corrected using the Nix and Gao model for this material. Furthermore, Vickers hardness tests were performed, in order to determine the possible size effect on these measurements. The results showed an underestimation of the hardness value when the tests were performed with large loads. Moreover, the elastic modulus of the Bridgman samples was 128 ± 5 GPa. Different residual imprints were visualised by atomic force microscopy and a focused ion beam, in order to observe superficial and internal fracturing. Mechanical properties presented a considerable reduction at the interface. This effect could be attributed to internal stress generated during the texturing process. In order to corroborate this hypothesis, an observation using transmission electron microscopy was performed

    Revisiting the mechanism of coagulation factor XIII activation and regulation from a structure/functional perspective

    Get PDF
    The activation and regulation of coagulation Factor XIII (FXIII) protein has been the subject of active research for the past three decades. Although discrete evidence exists on various aspects of FXIII activation and regulation a combinatorial structure/functional view in this regard is lacking. In this study, we present results of a structure/function study of the functional chain of events for FXIII. Our study shows how subtle chronological submolecular changes within calcium binding sites can bring about the detailed transformation of the zymogenic FXIII to its activated form especially in the context of FXIIIA and FXIIIB subunit interactions. We demonstrate what aspects of FXIII are important for the stabilization (first calcium binding site) of its zymogenic form and the possible modes of deactivation (thrombin mediated secondary cleavage) of the activated form. Our study for the first time provides a structural outlook of the FXIIIA 2 B 2 heterotetramer assembly, its association and dissociation. The FXIIIB subunits regulatory role in the overall process has also been elaborated upon. In summary, this study provides detailed structural insight into the mechanisms of FXIII activation and regulation that can be used as a template for the development of future highly specific therapeutic inhibitors targeting FXIII in pathological conditions like thrombosis

    A New Mechanism for β-Lactamases:Class D Enzymes Degrade 1β-Methyl Carbapenems through Lactone Formation

    Get PDF
    β-Lactamases threaten the clinical use of carbapenems, which are considered antibiotics of last resort. The classical mechanism of serine carbapenemase catalysis proceeds through hydrolysis of an acyl-enzyme intermediate. We show that class D β-lactamases also degrade clinically used 1β-methyl-substituted carbapenems through the unprecedented formation of a carbapenem-derived β-lactone. β-Lactone formation results from nucleophilic attack of the carbapenem hydroxyethyl side chain on the ester carbonyl of the acyl-enzyme intermediate. The carbapenem-derived lactone products inhibit both serine β-lactamases (particularly class D) and metallo-β-lactamases. These results define a new mechanism for the class D carbapenemases, in which a hydrolytic water molecule is not required

    Relevant Spatial Scales of Chemical Variation in Aplysina aerophoba

    Get PDF
    Understanding the scale at which natural products vary the most is critical because it sheds light on the type of factors that regulate their production. The sponge Aplysina aerophoba is a common Mediterranean sponge inhabiting shallow waters in the Mediterranean and its area of influence in Atlantic Ocean. This species contains large concentrations of brominated alkaloids (BAs) that play a number of ecological roles in nature. Our research investigates the ecological variation in BAs of A. aerophoba from a scale of hundred of meters to thousand kilometers. We used a nested design to sample sponges from two geographically distinct regions (Canary Islands and Mediterranean, over 2500 km), with two zones within each region (less than 50 km), two locations within each zone (less than 5 km), and two sites within each location (less than 500 m). We used high-performance liquid chromatography to quantify multiple BAs and a spectrophotometer to quantify chlorophyll a (Chl a). Our results show a striking degree of variation in both natural products and Chl a content. Significant variation in Chl a content occurred at the largest and smallest geographic scales. The variation patterns of BAs also occurred at the largest and smallest scales, but varied depending on which BA was analyzed. Concentrations of Chl a and isofistularin-3 were negatively correlated, suggesting that symbionts may impact the concentration of some of these compounds. Our results underline the complex control of the production of secondary metabolites, with factors acting at both small and large geographic scales affecting the production of multiple secondary metabolites

    Synthesis, Structure-Activity, and Structure-Stability Relationships of 2-Substituted- N

    Full text link
    N-Acylethanolamine acid amidase (NAAA) is a cysteine amidase that preferentially hydrolyzes saturated or monounsaturated fatty acid ethanolamides (FAEs), such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), which are endogenous agonists of nuclear peroxisome proliferator-activated receptor-α (PPAR-α). Compounds that feature an α-amino-β-lactone ring have been identified as potent and selective NAAA inhibitors and have been shown to exert marked anti-inflammatory effects that are mediated through FAE-dependent activation of PPAR-α. We synthesized and tested a series of racemic, diastereomerically pure β-substituted α-amino-β-lactones, as either carbamate or amide derivatives, investigating the structure-activity and structure-stability relationships (SAR and SSR) following changes in β-substituent size, relative stereochemistry at the α- and β-positions, and α-amino functionality. Substituted carbamate derivatives emerged as more active and stable than amide analogues, with the cis configuration being generally preferred for stability. Increased steric bulk at the β-position negatively affected NAAA inhibitory potency, while improving both chemical and plasma stability

    The Incidence Problem in Unionization

    No full text
    corecore