1,033 research outputs found

    Barrage formation is independent from heterokaryon incompatibility in Verticillium dahliae

    Get PDF
    Barrage formation has been traditionally used for the assessment of mycelial compatibility in many fungi and has often been assumed to represent a non-self recognition phenotype that is directly associated with vegetative incompatibility in these organisms. In this work, the optimal growth conditions for large-scale studies of barrage formation in the asexual fungus Verticillium dahliae were determined, and they were used for the analysis of a diverse collection comprising 69 isolates of V. dahliae and related species. Barrage formation was very frequent on a defined complete agar medium within V. dahliae and between species of the genus. However, it was not correlated with the classification of V. dahliae isolates into Vegetative Compatibility Groups (VCGs) (based on the standard method using complementary nit mutants), as it was recorded at high frequencies both within and between V. dahliae VCGs. The high overall frequency of barrage formation demonstrated the presence of a higher level of mycelial incompatibility in V. dahliae than heterokaryon incompatibility assessed by forcing complementary nit mutants to form heterokaryons under selective conditions. The possible association of barrage formation with morphological characteristics of the fungal colonies was investigated, and a negative correlation of frequency and intensity of barrages with the isolates’ capacity for pigment production was detected. Real-time quantitative PCR VCG discriminatio

    High-Throughput Assessment and Genetic Investigation of Vegetative Compatibility in Verticillium dahliae

    Get PDF
    Classification of isolates into vegetative compatibility groups (VCGs) using nitrate-non-utilizing (nit) mutants has been widely used for the characterization of Verticillium dahliae populations. However, certain methodological limitations prevent its application on a large scale. Furthermore, systematic investigations into the genetics underlying complementation tests between nit mutants of fungal isolates (i.e. heterokaryon formation) are lacking for Verticillium species. In this work, a diverse collection of 27 V. dahliae isolates – including representatives of all VCGs, both mating types, and heterokaryon self-incompatible isolates – was employed for the development and optimization of (i) a protocol for the rapid generation of nit mutants of V. dahliae isolates using UV-irradiation and (ii) a reproducible high-throughput procedure for complementation tests between nit mutants in liquid cultures using 96-well microplates. The genetic analysis of selected heterokaryons demonstrated that the frequently encountered ‘weak’ cross-reactions between VCGs and their subgroups can be actually heterokaryotic, implying the absence of strict genetic barriers between VCGs. In conclusion, we provide in this work an optimized method for the high-throughput VCG assignment of V. dahliae populations and a genetic analysis of heterokaryons that may have serious implications for the interpretation of VCG classification data. These advancements in the available methodology and the genetic background of vegetative compatibility grouping may contribute to a better understanding of the population biology of V. dahliae and possibly other mitosporic fun

    ‘‘Cryptic’’ group-I introns in the nuclear SSU-rRNA gene of Verticillium dahliae

    Get PDF
    Group-I introns are widespread—though irregularly distributed—in eukaryotic organisms, and they have been extensively used for discrimination and phylogenetic analyses. Within the Verticillium genus, which comprises important phytopathogenic fungi, a group-I intron was previously identified in the SSU-rRNA (18S) gene of only V. longisporum. In this work, we aimed at elucidating the SSU-located intron distribution in V. dahliae and other Verticillium species, and the assessment of heterogeneity regarding intron content among rDNA repeats of fungal strains. Using conserved PCR primers for the amplification of the SSU gene, a structurally similar novel intron (sub-group IC1) was detected in only a few V. dahliae isolates. However, when intron-specific primers were used for the screening of a diverse collection of Verticillium isolates that originally failed to produce intron-containing SSU amplicons, most were found to contain one or both intron types, at variable rDNA repeat numbers. This marked heterogeneity was confirmed with qRT-PCR by testing rDNA copy numbers (varying from 39 to 70 copies per haploid genome) and intron copy ratios in selected isolates. Our results demonstrate that (a) IC1 group-I introns are not specific to V. longisporum within the Verticillium genus, (b) V. dahliae isolates of vegetative compatibility groups (VCGs) 4A and 6, which bear the novel intron at most of their rDNA repeats, are closely related, and (c) there is considerable intra-genomic heterogeneity for the presence or absence of introns among the ribosomal repeats. These findings underline that distributions of introns in the highly heterogeneous repetitive rDNA complex should always be verified with sensitive methods to avoid misleading conclusions for the phylogeny of fungi and other organisms

    Structural and phylogenetic analysis of the rDNA intergenic spacer region of Verticillium dahliae

    Get PDF
    The nuclear ribosomal intergenic spacer (IGS) region was structurally analyzed and exploited for molecular discrimination and phylogenetic analysis of vegetative compatibility groups (VCGs) of Verticillium dahliae. A structural study of 201 available IGS sequences of the fungus was performed, and four classes of ubiquitous repetitive elements, organized in higher-order repetitive structures or composite blocks, were detected in a variable IGS subregion. This subregion was amplified from an international collection of 59 V. dahliae isolates covering all VCGs, together with nine representative V. albo-atrum and V. longisporum isolates, and sequenced. Structural and phylogenetic analyses of the sequences of this polymorphic IGS subregion were consistently informative and allowed the identification of two main lineages in V. dahliae, that is, clade I including VCGs 1A, 1B, 2A, 4B, and 3 and clade II containing VCGs 2B, 4A, and 6. Analysis of IGS sequences proved a highly suitable molecular tool for (a) rapid interspecific differentiation, (b) intraspecific discrimination among VCGs of V. dahliae, facilitating high-throughput VCG confirmation and prediction/profiling, and (c) phylogenetic analysis within and among V. dahliae VCGs

    A Genome-Wide Screen for Bacterial Envelope Biogenesis Mutants Identifies a Novel Factor Involved in Cell Wall Precursor Metabolism

    Get PDF
    The cell envelope of Gram-negative bacteria is a formidable barrier that is difficult for antimicrobial drugs to penetrate. Thus, the list of treatments effective against these organisms is small and with the rise of new resistance mechanisms is shrinking rapidly. New therapies to treat Gram-negative bacterial infections are therefore sorely needed. This goal will be greatly aided by a detailed mechanistic understanding of envelope assembly. Although excellent progress in the identification of essential envelope biogenesis systems has been made in recent years, many aspects of the process remain to be elucidated. We therefore developed a simple, quantitative, and high-throughput assay for mutants with envelope biogenesis defects and used it to screen an ordered single-gene deletion library of Escherichia coli. The screen was robust and correctly identified numerous mutants known to be involved in envelope assembly. Importantly, the screen also implicated 102 genes of unknown function as encoding factors that likely impact envelope biogenesis. As a proof of principle, one of these factors, ElyC (YcbC), was characterized further and shown to play a critical role in the metabolism of the essential lipid carrier used for the biogenesis of cell wall and other bacterial surface polysaccharides. Further analysis of the function of ElyC and other hits identified in our screen is likely to uncover a wealth of new information about the biogenesis of the Gram-negative envelope and the vulnerabilities in the system suitable for drug targeting. Moreover, the screening assay described here should be readily adaptable to other organisms to study the biogenesis of different envelope architectures

    The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase

    Get PDF
    RbpA is a small non-DNA-binding transcription factor that associates with RNA polymerase holoenzyme and stimulates transcription in actinobacteria, including Streptomyces coelicolor and Mycobacterium tuberculosis. RbpA seems to show specificity for the vegetative form of RNA polymerase as opposed to alternative forms of the enzyme. Here, we explain the basis of this specificity by showing that RbpA binds directly to the principal σ subunit in these organisms, but not to more diverged alternative σ factors. Nuclear magnetic resonance spectroscopy revealed that, although differing in their requirement for structural zinc, the RbpA orthologues from S. coelicolor and M. tuberculosis share a common structural core domain, with extensive, apparently disordered, N- and C-terminal regions. The RbpA-σ interaction is mediated by the C-terminal region of RbpA and σ domain 2, and S. coelicolor RbpA mutants that are defective in binding σ are unable to stimulate transcription in vitro and are inactive in vivo. Given that RbpA is essential in M. tuberculosis and critical for growth in S. coelicolor, these data support a model in which RbpA plays a key role in the σ cycle in actinobacteria

    An Atlas of human kinase regulation

    No full text
    The coordinated regulation of protein kinases is a rapid mechanism that integrates diverse cues and swiftly determines appropriate cellular responses. However, our understanding of cellular decision-making has been limited by the small number of simultaneously monitored phospho- regulatory events. Here, we have estimated changes in activity in 215 human kinases in 399 condi- tions from a compilation of nearly 3 million phosphopeptide quantifications. This atlas identifies commonly regulated kinases as those that are central in the signaling network and defines the logic relationships between kinase pairs. Co-regulation along the conditions predicts kinase-complex and kinase-substrate associations. Additionally, the kinase regulation profile acts as a molecular fingerprint to identify related and opposing signaling states. Using this atlas, we identified essen- tial mediators of stem cell differentiation, modulators of Salmonella infection and new targets of AKT1. This provides a global view of human phosphorylation-based signaling and the necessary context to better understand kinase driven decision-making

    Коло Марусі Чурай

    Get PDF
    In this article Marusya Churay*s (a character famous in story and song) life history is researched. On the basis of real events and historical facts the author tells about people who were related to the life of this personality

    The RND-family transporter, HpnN, is required for hopanoid localization to the outer membrane of Rhodopseudomonas palustris TIE-1

    Get PDF
    Rhodopseudomonas palustris TIE-1 is a Gram-negative bacterium that produces structurally diverse hopanoid lipids that are similar to eukaryotic steroids. Its genome encodes several homologues to proteins involved in eukaryotic steroid trafficking. In this study, we explored the possibility that two of these proteins are involved in intracellular hopanoid transport. R. palustris has a sophisticated membrane system comprising outer, cytoplasmic, and inner cytoplasmic membranes. It also divides asymmetrically, producing a mother and swarmer cell. We deleted genes encoding two putative hopanoid transporters that belong to the resistance–nodulation– cell division superfamily. Phenotypic analyses revealed that one of these putative transporters (HpnN) is essential for the movement of hopanoids from the cytoplasmic to the outer membrane, whereas the other (Rpal_4267) plays a minor role. C30 hopanoids, such as diploptene, are evenly distributed between mother and swarmer cells, whereas hpnN is required for the C35 hopanoid, bacteriohopanetetrol, to remain localized to the mother cell type. Mutant cells lacking HpnN grow like the WT at 30 °C but slower at 38 °C. Following cell division at 38 °C, the ΔhpnN cells remain connected by their cell wall, forming long filaments. This phenotype may be attributed to hopanoid mislocalization because a double mutant deficient in both hopanoid biosynthesis and transport does not form filaments. However, the lack of hopanoids severely compromises cell growth at higher temperatures more generally. Because hopanoid mutants only manifest a strong phenotype under certain conditions, R. palustris is an attractive model organism in which to study their transport and function
    corecore