33 research outputs found
Failure to Preserve β-Cell Function With Mycophenolate Mofetil and Daclizumab Combined Therapy in Patients With New- Onset Type 1 Diabetes
OBJECTIVE This trial tested whether mycophenolate mofetil (MMF) alone or with daclizumab (DZB) could arrest the loss of insulin-producing β-cells in subjects with new-onset type 1 diabetes.
RESEARCH DESIGN AND METHODS A multi-center, randomized, placebo-controlled, double-masked trial was initiated by Type 1 Diabetes TrialNet at 13 sites in North America and Europe. Subjects diagnosed with type 1 diabetes and with sufficient C-peptide within 3 months of diagnosis were randomized to either MMF alone, MMF plus DZB, or placebo, and then followed for 2 years. The primary outcome was the geometric mean area under the curve (AUC) C-peptide from the 2-h mixed meal tolerance test.
RESULTS One hundred and twenty-six subjects were randomized and treated during the trial. The geometric mean C-peptide AUC at 2 years was unaffected by MMF alone or MMF plus DZB versus placebo. Adverse events were more frequent in the active therapy groups relative to the control group, but not significantly.
CONCLUSIONS Neither MMF alone nor MMF in combination with DZB had an effect on the loss of C-peptide in subjects with new-onset type 1 diabetes. Higher doses or more targeted immunotherapies may be needed to affect the autoimmune process
Recommended from our members
An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes.
BackgroundType 1 diabetes is a chronic autoimmune disease that leads to destruction of insulin-producing beta cells and dependence on exogenous insulin for survival. Some interventions have delayed the loss of insulin production in patients with type 1 diabetes, but interventions that might affect clinical progression before diagnosis are needed.MethodsWe conducted a phase 2, randomized, placebo-controlled, double-blind trial of teplizumab (an Fc receptor-nonbinding anti-CD3 monoclonal antibody) involving relatives of patients with type 1 diabetes who did not have diabetes but were at high risk for development of clinical disease. Patients were randomly assigned to a single 14-day course of teplizumab or placebo, and follow-up for progression to clinical type 1 diabetes was performed with the use of oral glucose-tolerance tests at 6-month intervals.ResultsA total of 76 participants (55 [72%] of whom were ≤18 years of age) underwent randomization - 44 to the teplizumab group and 32 to the placebo group. The median time to the diagnosis of type 1 diabetes was 48.4 months in the teplizumab group and 24.4 months in the placebo group; the disease was diagnosed in 19 (43%) of the participants who received teplizumab and in 23 (72%) of those who received placebo. The hazard ratio for the diagnosis of type 1 diabetes (teplizumab vs. placebo) was 0.41 (95% confidence interval, 0.22 to 0.78; P = 0.006 by adjusted Cox proportional-hazards model). The annualized rates of diagnosis of diabetes were 14.9% per year in the teplizumab group and 35.9% per year in the placebo group. There were expected adverse events of rash and transient lymphopenia. KLRG1+TIGIT+CD8+ T cells were more common in the teplizumab group than in the placebo group. Among the participants who were HLA-DR3-negative, HLA-DR4-positive, or anti-zinc transporter 8 antibody-negative, fewer participants in the teplizumab group than in the placebo group had diabetes diagnosed.ConclusionsTeplizumab delayed progression to clinical type 1 diabetes in high-risk participants. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT01030861.)
Rituximab, B-lymphocyte depletion, and preservation of beta-cell function
BACKGROUND:
The immunopathogenesis of type 1 diabetes mellitus is associated with T-lymphocyte autoimmunity. However, there is growing evidence that B lymphocytes play a role in many T-lymphocyte-mediated diseases. It is possible to achieve selective depletion of B lymphocytes with rituximab, an anti-CD20 monoclonal antibody. This phase 2 study evaluated the role of B-lymphocyte depletion in patients with type 1 diabetes.
METHODS:
We conducted a randomized, double-blind study in which 87 patients between 8 and 40 years of age who had newly diagnosed type 1 diabetes were assigned to receive infusions of rituximab or placebo on days 1, 8, 15, and 22 of the study. The primary outcome, assessed 1 year after the first infusion, was the geometric mean area under the curve (AUC) for the serum C-peptide level during the first 2 hours of a mixed-meal tolerance test. Secondary outcomes included safety and changes in the glycated hemoglobin level and insulin dose.
RESULTS:
At 1 year, the mean AUC for the level of C peptide was significantly higher in the rituximab group than in the placebo group. The rituximab group also had significantly lower levels of glycated hemoglobin and required less insulin. Between 3 months and 12 months, the rate of decline in C-peptide levels in the rituximab group was significantly less than that in the placebo group. CD19+ B lymphocytes were depleted in patients in the rituximab group, but levels increased to 69% of baseline values at 12 months. More patients in the rituximab group than in the placebo group had adverse events, mostly grade 1 or grade 2, after the first infusion. The reactions appeared to be minimal with subsequent infusions. There was no increase in infections or neutropenia with rituximab.
CONCLUSIONS:
A four-dose course of rituximab partially preserved beta-cell function over a period of 1 year in patients with type 1 diabetes. The finding that B lymphocytes contribute to the pathogenesis of type 1 diabetes may open a new pathway for exploration in the treatment of patients with this condition
Screening for Type 1 Diabetes in the General Population:A Status Report and Perspective
Most screening programs to identify individuals at risk for type 1 diabetes have targeted relatives of people living with the disease to improve yield and feasibility. However, ∼90% of those who develop type 1 diabetes do not have a family history. Recent successes in disease-modifying therapies to impact the course of early-stage disease have ignited the consideration of the need for and feasibility of population screening to identify those at increased risk. Existing population screening programs rely on genetic or autoantibody screening, and these have yielded significant information about disease progression and approaches for timing for screening in clinical practice. At the March 2021 Type 1 Diabetes TrialNet Steering Committee meeting, a session was held in which ongoing efforts for screening in the general population were discussed. This report reviews the background of these efforts and the details of those programs. Additionally, we present hurdles that need to be addressed for successful implementation of population screening and provide initial recommendations for individuals with positive screens so that standardized guidelines for monitoring and follow-up can be established
Abnormal neutrophil signature in the blood and pancreas of presymptomatic and symptomatic type 1 diabetes
BACKGROUND. Neutrophils and their inflammatory mediators are key pathogenic components in multiple autoimmune diseases, while their role in human type 1 diabetes (T1D), a disease that progresses sequentially through identifiable stages prior to the clinical onset, is not well understood. We previously reported that the number of circulating neutrophils is reduced in patients with T1D and in presymptomatic at-risk subjects. The aim of the present work was to identify possible changes in circulating and pancreas-residing neutrophils throughout the disease course to better elucidate neutrophil involvement in human T1D.
METHODS. Data collected from 389 subjects at risk of developing T1D, and enrolled in 4 distinct studies performed by TrialNet, were analyzed with comprehensive statistical approaches to determine whether the number of circulating neutrophils correlates with pancreas function. To obtain a broad analysis of pancreas-infiltrating neutrophils throughout all disease stages, pancreas sections collected worldwide from 4 different cohorts (i.e., nPOD, DiViD, Siena, and Exeter) were analyzed by immunohistochemistry and immunofluorescence. Finally, circulating neutrophils were purified from unrelated nondiabetic subjects and donors at various T1D stages and their transcriptomic signature was determined by RNA sequencing.
RESULTS. Here, we show that the decline in β cell function is greatest in individuals with the lowest peripheral neutrophil numbers. Neutrophils infiltrate the pancreas prior to the onset of symptoms and they continue to do so as the disease progresses. Of interest, a fraction of these pancreasinfiltrating neutrophils also extrudes neutrophil extracellular traps (NETs), suggesting a tissue-specific pathogenic role. Whole-transcriptome analysis of purified blood neutrophils revealed a unique molecular signature that is distinguished by an overabundance of IFN-associated genes; despite being healthy, said signature is already present in T1D-autoantibody-negative at-risk subjects.
CONCLUSIONS. These results reveal an unexpected abnormality in neutrophil disposition both in the circulation and in the pancreas of presymptomatic and symptomatic T1D subjects, implying that targeting neutrophils might represent a previously unrecognized therapeutic modality
Recommended from our members
Increasing ICA512 autoantibody titers predict development of abnormal oral glucose tolerance tests.
ObjectiveDetermine if autoantibody titer magnitude and variability predict glucose abnormalities in subjects at risk for type 1 diabetes.Research designs and methodsDemographic information, longitudinal autoantibody titers, and oral glucose tolerance test (OGTT) data were obtained from the TrialNet Pathway to Prevention study. Subjects (first and second degree relatives of individuals with type 1 diabetes) with at least 2 diabetes autoantibodies were selected for analysis. Autoantibody titer means were calculated for each subject for the duration of study participation and the relationship between titer tertiles and glucose value tertiles from OGTTs (normal, impaired, and diabetes) was assessed with a proportional odds ordinal regression model. A matched pairs analysis was used to examine the relationship between changes in individual autoantibody titers and 120-minute glucose values. Titer variability was quantified using cumulative titer standard deviations.ResultsWe studied 778 subjects recruited in the TrialNet Pathway to Prevention study between 2006 and 2014. Increased cumulative mean titer values for both ICA512 and GAD65 (estimated increase in proportional odds = 1.61, 95% CI = 1.39, 1.87, P < 1 × 10-9 and 1.17, 95% CI = 1.03, 1.32, P = .016, respectively) were associated with peak 120-minute glucose values. While fluctuating titer levels were observed in some subjects, no significant relationship between titer standard deviation and glucose values was observed.ConclusionICA512 autoantibody titers associate with progressive abnormalities in glucose metabolism in subjects at risk for type 1 diabetes. Fluctuations in autoantibody titers do not correlate with lower rates of progression to clinical disease
Identical and Nonidentical Twins: Risk and Factors Involved in Development of Islet Autoimmunity and Type 1 Diabetes
OBJECTIVE: There are variable reports of risk of concordance for progression to islet autoantibodies and type 1 diabetes in identical twins after one twin is diagnosed. We examined development of positive autoantibodies and type 1 diabetes and the effects of genetic factors and common environment on autoantibody positivity in identical twins, nonidentical twins, and full siblings. RESEARCH DESIGN AND METHODS: Subjects from the TrialNet Pathway to Prevention Study (N = 48,026) were screened from 2004 to 2015 for islet autoantibodies (GAD antibody [GADA], insulinoma-associated antigen 2 [IA-2A], and autoantibodies against insulin [IAA]). Of these subjects, 17,226 (157 identical twins, 283 nonidentical twins, and 16,786 full siblings) were followed for autoantibody positivity or type 1 diabetes for a median of 2.1 years. RESULTS: At screening, identical twins were more likely to have positive GADA, IA-2A, and IAA than nonidentical twins or full siblings (all P < 0.0001). Younger age, male sex, and genetic factors were significant factors for expression of IA-2A, IAA, one or more positive autoantibodies, and two or more positive autoantibodies (all P ≤ 0.03). Initially autoantibody-positive identical twins had a 69% risk of diabetes by 3 years compared with 1.5% for initially autoantibody-negative identical twins. In nonidentical twins, type 1 diabetes risk by 3 years was 72% for initially multiple autoantibody-positive, 13% for single autoantibody-positive, and 0% for initially autoantibody-negative nonidentical twins. Full siblings had a 3-year type 1 diabetes risk of 47% for multiple autoantibody-positive, 12% for single autoantibody-positive, and 0.5% for initially autoantibody-negative subjects. CONCLUSIONS: Risk of type 1 diabetes at 3 years is high for initially multiple and single autoantibody-positive identical twins and multiple autoantibody-positive nonidentical twins. Genetic predisposition, age, and male sex are significant risk factors for development of positive autoantibodies in twins
The prediction of type 1 diabetes by multiple autoantibody levels and their incorporation into an autoantibody risk score in relatives of type 1 diabetic patients.
OBJECTIVE: We assessed whether a risk score that incorporates levels of multiple islet autoantibodies could enhance the prediction of type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: TrialNet Natural History Study participants (n = 784) were tested for three autoantibodies (GADA, IA-2A, and mIAA) at their initial screening. Samples from those positive for at least one autoantibody were subsequently tested for ICA and ZnT8A. An autoantibody risk score (ABRS) was developed from a proportional hazards model that combined autoantibody levels from each autoantibody along with their designations of positivity and negativity. RESULTS: The ABRS was strongly predictive of T1D (hazard ratio [with 95% CI] 2.72 [2.23-3.31], P < 0.001). Receiver operating characteristic curve areas (with 95% CI) for the ABRS revealed good predictability (0.84 [0.78-0.90] at 2 years, 0.81 [0.74-0.89] at 3 years, P < 0.001 for both). The composite of levels from the five autoantibodies was predictive of T1D before and after an adjustment for the positivity or negativity of autoantibodies (P < 0.001). The findings were almost identical when ICA was excluded from the risk score model. The combination of the ABRS and the previously validated Diabetes Prevention Trial-Type 1 Risk Score (DPTRS) predicted T1D more accurately (0.93 [0.88-0.98] at 2 years, 0.91 [0.83-0.99] at 3 years) than either the DPTRS or the ABRS alone (P ≤ 0.01 for all comparisons). CONCLUSIONS: These findings show the importance of considering autoantibody levels in assessing the risk of T1D. Moreover, levels of multiple autoantibodies can be incorporated into an ABRS that accurately predicts T1D
Recommended from our members
