230 research outputs found

    Assessment of Multifactor Gene-Environment Interactions and Ovarian Cancer Risk: Candidate Genes, Obesity and Hormone-Related Risk Factors

    Get PDF
    BACKGROUND: Many epithelial ovarian cancer (EOC) risk factors relate to hormone exposure and elevated estrogen levels are associated with obesity in postmenopausal women. Therefore, we hypothesized that gene-environment interactions related to hormone-related risk factors could differ between obese and non-obese women. METHODS: We considered interactions between 11,441 SNPs within 80 candidate genes related to hormone biosynthesis and metabolism and insulin-like growth factors with six hormone-related factors (oral contraceptive use, parity, endometriosis, tubal ligation, hormone replacement therapy, and estrogen use) and assessed whether these interactions differed between obese and non-obese women. Interactions were assessed using logistic regression models and data from 14 case-control studies (6,247 cases; 10,379 controls). Histotype-specific analyses were also completed. RESULTS: SNPs in the following candidate genes showed notable interaction: IGF1R (rs41497346, estrogen plus progesterone hormone therapy, histology = all, P = 4.9 × 10(-6)) and ESR1 (rs12661437, endometriosis, histology = all, P = 1.5 × 10(-5)). The most notable obesity-gene-hormone risk factor interaction was within INSR (rs113759408, parity, histology = endometrioid, P = 8.8 × 10(-6)). CONCLUSIONS: We have demonstrated the feasibility of assessing multifactor interactions in large genetic epidemiology studies. Follow-up studies are necessary to assess the robustness of our findings for ESR1, CYP11A1, IGF1R, CYP11B1, INSR, and IGFBP2 Future work is needed to develop powerful statistical methods able to detect these complex interactions. IMPACT: Assessment of multifactor interaction is feasible, and, here, suggests that the relationship between genetic variants within candidate genes and hormone-related risk factors may vary EOC susceptibility

    Contribution of Germline Mutations in the RAD51B, RAD51C, and RAD51D Genes to Ovarian Cancer in the Population

    Get PDF
    PURPOSE: The aim of this study was to estimate the contribution of deleterious mutations in the RAD51B, RAD51C, and RAD51D genes to invasive epithelial ovarian cancer (EOC) in the population and in a screening trial of individuals at high risk of ovarian cancer. PATIENTS AND METHODS: The coding sequence and splice site boundaries of the three RAD51 genes were sequenced and analyzed in germline DNA from a case-control study of 3,429 patients with invasive EOC and 2,772 controls as well as in 2,000 unaffected women who were BRCA1/BRCA2 negative from the United Kingdom Familial Ovarian Cancer Screening Study (UK_FOCSS) after quality-control analysis. RESULTS: In the case-control study, we identified predicted deleterious mutations in 28 EOC cases (0.82%) compared with three controls (0.11%; P < .001). Mutations in EOC cases were more frequent in RAD51C (14 occurrences, 0.41%) and RAD51D (12 occurrences, 0.35%) than in RAD51B (two occurrences, 0.06%). RAD51C mutations were associated with an odds ratio of 5.2 (95% CI, 1.1 to 24; P = .035), and RAD51D mutations conferred an odds ratio of 12 (95% CI, 1.5 to 90; P = .019). We identified 13 RAD51 mutations (0.65%) in unaffected UK_FOCSS participants (RAD51C, n = 7; RAD51D, n = 5; and RAD51B, n = 1), which was a significantly greater rate than in controls (P < .001); furthermore, RAD51 mutation carriers were more likely than noncarriers to have a family history of ovarian cancer (P < .001). CONCLUSION: These results confirm that RAD51C and RAD51D are moderate ovarian cancer susceptibility genes and suggest that they confer levels of risk of EOC that may warrant their use alongside BRCA1 and BRCA2 in routine clinical genetic testing

    Investigation of Exomic Variants Associated with Overall Survival in Ovarian Cancer

    Get PDF
    BACKGROUND: While numerous susceptibility loci for epithelial ovarian cancer (EOC) have been identified, few associations have been reported with overall survival. In the absence of common prognostic genetic markers, we hypothesize that rare coding variants may be associated with overall EOC survival and assessed their contribution in two exome-based genotyping projects of the Ovarian Cancer Association Consortium (OCAC). METHODS: The primary patient set (Set 1) included 14 independent EOC studies (4,293 patients) and 227,892 variants, and a secondary patient set (Set 2) included six additional EOC studies (1,744 patients) and 114,620 variants. Because power to detect rare variants individually is reduced, gene-level tests were conducted. Sets were analyzed separately at individual variants and by gene, and then combined with meta-analyses (73,203 variants and 13,163 genes overlapped). RESULTS: No individual variant reached genome-wide statistical significance. A SNP previously implicated to be associated with EOC risk and, to a lesser extent, survival, rs8170, showed the strongest evidence of association with survival and similar effect size estimates across sets (Pmeta = 1.1E-6, HRSet1 = 1.17, HRSet2 = 1.14). Rare variants in ATG2B, an autophagy gene important for apoptosis, were significantly associated with survival after multiple testing correction (Pmeta = 1.1E-6; Pcorrected = 0.01). CONCLUSIONS: Common variant rs8170 and rare variants in ATG2B may be associated with EOC overall survival, although further study is needed. IMPACT: This study represents the first exome-wide association study of EOC survival to include rare variant analyses, and suggests that complementary single variant and gene-level analyses in large studies are needed to identify rare variants that warrant follow-up study

    An assessment of existing models for individualized breast cancer risk estimation in a screening program in Spain

    Get PDF
    Background: The aim of this study was to evaluate the calibration and discriminatory power of three predictive models of breast cancer risk. Methods: We included 13,760 women who were first-time participants in the Sabadell-Cerdanyola Breast Cancer Screening Program, in Catalonia, Spain. Projections of risk were obtained at three and five years for invasive cancer using the Gail, Chen and Barlow models. Incidence and mortality data were obtained from the Catalan registries. The calibration and discrimination of the models were assessed using the Hosmer-Lemeshow C statistic, the area under the receiver operating characteristic curve (AUC) and the Harrell’s C statistic. Results: The Gail and Chen models showed good calibration while the Barlow model overestimated the number of cases: the ratio between estimated and observed values at 5 years ranged from 0.86 to 1.55 for the first two models and from 1.82 to 3.44 for the Barlow model. The 5-year projection for the Chen and Barlow models had the highest discrimination, with an AUC around 0.58. The Harrell’s C statistic showed very similar values in the 5-year projection for each of the models. Although they passed the calibration test, the Gail and Chen models overestimated the number of cases in some breast density categories. Conclusions: These models cannot be used as a measure of individual risk in early detection programs to customize screening strategies. The inclusion of longitudinal measures of breast density or other risk factors in joint models of survival and longitudinal data may be a step towards personalized early detection of BC.This study was funded by grant PS09/01340 and The Spanish Network on Chronic Diseases REDISSEC (RD12/0001/0007) from the Health Research Fund (Fondo de Investigación Sanitaria) of the Spanish Ministry of Health

    Network-Based Integration of GWAS and Gene Expression Identifies a HOX-Centric Network Associated with Serous Ovarian Cancer Risk

    Get PDF
    BACKGROUND: Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by coexpression may also be enriched for additional EOC risk associations. METHODS: We selected TF genes within 1 Mb of the top signal at the 12 genome-wide significant risk loci. Mutual information, a form of correlation, was used to build networks of genes strongly coexpressed with each selected TF gene in the unified microarray dataset of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this dataset were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). RESULTS: Gene set enrichment analysis identified six networks centered on TF genes (HOXB2, HOXB5, HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes from the risk-associated end of the ranked list (P < 0.05 and FDR < 0.05). These results were replicated (P < 0.05) using an independent association study (7,035 cases/21,693 controls). Genes underlying enrichment in the six networks were pooled into a combined network. CONCLUSION: We identified a HOX-centric network associated with serous EOC risk containing several genes with known or emerging roles in serous EOC development. IMPACT: Network analysis integrating large, context-specific datasets has the potential to offer mechanistic insights into cancer susceptibility and prioritize genes for experimental characterization

    Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort

    Get PDF
    This work was supported by the National Institute for Health Research (NIHR) and Genesis Breast Cancer Prevention Appeal (references GA10-033 and GA13-006). This article presents independent research funded by the NIHR under its Programme Grants for Applied Research (grant RP-PG-0707-10031). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. The authors also acknowledge the support of Medical Research Council Health eResearch Centre grant MR/K006665/1

    Risk prediction models with incomplete data with application to prediction of estrogen receptor-positive breast cancer: prospective data from the Nurses' Health Study

    Get PDF
    Introduction A number of breast cancer risk prediction models have been developed to provide insight into a woman\u27s individual breast cancer risk. Although circulating levels of estradiol in postmenopausal women predict subsequent breast cancer risk, whether the addition of estradiol levels adds significantly to a model\u27s predictive power has not previously been evaluated. Methods Using linear regression, the authors developed an imputed estradiol score using measured estradiol levels (the outcome) and both case status and risk factor data (for example, body mass index) from a nested case-control study conducted within a large prospective cohort study and used multiple imputation methods to develop an overall risk model including both risk factor data from the main cohort and estradiol levels from the nested case-control study. Results The authors evaluated the addition of imputed estradiol level to the previously published Rosner and Colditz log-incidence model for breast cancer risk prediction within the larger Nurses\u27 Health Study cohort. The follow-up was from 1980 to 2000; during this time, 1,559 invasive estrogen receptor-positive breast cancer cases were confirmed. The addition of imputed estradiol levels significantly improved risk prediction; the age-specific concordance statistic increased from 0.635 ± 0.007 to 0.645 ± 0.007 (P \u3c 0.001) after the addition of imputed estradiol. Conclusion Circulating estradiol levels in postmenopausal women appear to add to other lifestyle factors in predicting a woman\u27s individual risk of breast cancer

    Germline whole exome sequencing and large-scale replication identifies FANCM as a likely high grade serous ovarian cancer susceptibility gene

    Get PDF
    We analyzed whole exome sequencing data in germline DNA from 412 high grade serous ovarian cancer (HGSOC) cases from The Cancer Genome Atlas Project and identified 5,517 genes harboring a predicted deleterious germline coding mutation in at least one HGSOC case. Gene-set enrichment analysis showed enrichment for genes involved in DNA repair (p = 1.8x10(-3)). Twelve DNA repair genes - APEX1, APLF, ATX, EME1, FANCL, FANCM, MAD2L2, PARP2, PARP3, POLN, RAD54L and SMUG1 - were prioritized for targeted sequencing in up to 3,107 HGSOC cases, 1,491 cases of other epithelial ovarian cancer (EOC) subtypes and 3,368 unaffected controls of European origin. We estimated mutation prevalence for each gene and tested for associations with disease risk. Mutations were identified in both cases and controls in all genes except MAD2L2, where we found no evidence of mutations in controls. In FANCM we observed a higher mutation frequency in HGSOC cases compared to controls (29/3,107 cases, 0.96 percent; 13/3,368 controls, 0.38 percent; P = 0.008) with little evidence for association with other subtypes (6/1,491, 0.40 percent; P = 0.82). The relative risk of HGSOC associated with deleterious FANCM mutations was estimated to be 2.5 (95% CI 1.3 - 5.0; P = 0.006). In summary, whole exome sequencing of EOC cases with large-scale replication in case-control studies has identified FANCM as a likely novel susceptibility gene for HGSOC, with mutations associated with a moderate increase in risk. These data may have clinical implications for risk prediction and prevention approaches for high-grade serous ovarian cancer in the future and a significant impact on reducing disease mortality
    corecore