371 research outputs found
Local Kernels and the Geometric Structure of Data
We introduce a theory of local kernels, which generalize the kernels used in
the standard diffusion maps construction of nonparametric modeling. We prove
that evaluating a local kernel on a data set gives a discrete representation of
the generator of a continuous Markov process, which converges in the limit of
large data. We explicitly connect the drift and diffusion coefficients of the
process to the moments of the kernel. Moreover, when the kernel is symmetric,
the generator is the Laplace-Beltrami operator with respect to a geometry which
is influenced by the embedding geometry and the properties of the kernel. In
particular, this allows us to generate any Riemannian geometry by an
appropriate choice of local kernel. In this way, we continue a program of
Belkin, Niyogi, Coifman and others to reinterpret the current diverse
collection of kernel-based data analysis methods and place them in a geometric
framework. We show how to use this framework to design local kernels invariant
to various features of data. These data-driven local kernels can be used to
construct conformally invariant embeddings and reconstruct global
diffeomorphisms
Linear theory for filtering nonlinear multiscale systems with model error
We study filtering of multiscale dynamical systems with model error arising
from unresolved smaller scale processes. The analysis assumes continuous-time
noisy observations of all components of the slow variables alone. For a linear
model with Gaussian noise, we prove existence of a unique choice of parameters
in a linear reduced model for the slow variables. The linear theory extends to
to a non-Gaussian, nonlinear test problem, where we assume we know the optimal
stochastic parameterization and the correct observation model. We show that
when the parameterization is inappropriate, parameters chosen for good filter
performance may give poor equilibrium statistical estimates and vice versa.
Given the correct parameterization, it is imperative to estimate the parameters
simultaneously and to account for the nonlinear feedback of the stochastic
parameters into the reduced filter estimates. In numerical experiments on the
two-layer Lorenz-96 model, we find that parameters estimated online, as part of
a filtering procedure, produce accurate filtering and equilibrium statistical
prediction. In contrast, a linear regression based offline method, which fits
the parameters to a given training data set independently from the filter,
yields filter estimates which are worse than the observations or even divergent
when the slow variables are not fully observed
Nonparametric Uncertainty Quantification for Stochastic Gradient Flows
This paper presents a nonparametric statistical modeling method for
quantifying uncertainty in stochastic gradient systems with isotropic
diffusion. The central idea is to apply the diffusion maps algorithm to a
training data set to produce a stochastic matrix whose generator is a discrete
approximation to the backward Kolmogorov operator of the underlying dynamics.
The eigenvectors of this stochastic matrix, which we will refer to as the
diffusion coordinates, are discrete approximations to the eigenfunctions of the
Kolmogorov operator and form an orthonormal basis for functions defined on the
data set. Using this basis, we consider the projection of three uncertainty
quantification (UQ) problems (prediction, filtering, and response) into the
diffusion coordinates. In these coordinates, the nonlinear prediction and
response problems reduce to solving systems of infinite-dimensional linear
ordinary differential equations. Similarly, the continuous-time nonlinear
filtering problem reduces to solving a system of infinite-dimensional linear
stochastic differential equations. Solving the UQ problems then reduces to
solving the corresponding truncated linear systems in finitely many diffusion
coordinates. By solving these systems we give a model-free algorithm for UQ on
gradient flow systems with isotropic diffusion. We numerically verify these
algorithms on a 1-dimensional linear gradient flow system where the analytic
solutions of the UQ problems are known. We also apply the algorithm to a
chaotically forced nonlinear gradient flow system which is known to be well
approximated as a stochastically forced gradient flow.Comment: Find the associated videos at: http://personal.psu.edu/thb11
Kalman-Takens filtering in the presence of dynamical noise
The use of data assimilation for the merging of observed data with dynamical
models is becoming standard in modern physics. If a parametric model is known,
methods such as Kalman filtering have been developed for this purpose. If no
model is known, a hybrid Kalman-Takens method has been recently introduced, in
order to exploit the advantages of optimal filtering in a nonparametric
setting. This procedure replaces the parametric model with dynamics
reconstructed from delay coordinates, while using the Kalman update formulation
to assimilate new observations. We find that this hybrid approach results in
comparable efficiency to parametric methods in identifying underlying dynamics,
even in the presence of dynamical noise. By combining the Kalman-Takens method
with an adaptive filtering procedure we are able to estimate the statistics of
the observational and dynamical noise. This solves a long standing problem of
separating dynamical and observational noise in time series data, which is
especially challenging when no dynamical model is specified
- …
