5,247 research outputs found

    Top Quark Rare Decays via Loop-Induced FCNC Interactions in Extended Mirror Fermion Model

    Full text link
    Flavor changing neutral current (FCNC) interactions for a top quark tt decays into XqXq with XX represents a neutral gauge or Higgs boson, and qq a up- or charm-quark are highly suppressed in the Standard Model (SM) due to the Glashow-Iliopoulos-Miami mechanism. Whilst current limits on the branching ratios of these processes have been established at the order of 10410^{-4} from the Large Hadron Collider experiments, SM predictions are at least nine orders of magnitude below. In this work, we study some of these FCNC processes in the context of an extended mirror fermion model, originally proposed to implement the electroweak scale seesaw mechanism for non-sterile right-handed neutrinos. We show that one can probe the process tZct \to Zc for a wide range of parameter space with branching ratios varying from 10610^{-6} to 10810^{-8}, comparable with various new physics models including the general two Higgs doublet model with or without flavor violations at tree level, minimal supersymmetric standard model with or without RR-parity, and extra dimension model.Comment: 30 pages, 8 figures, 2 tables and 1 appendix. Version to appear in NP

    Managing Triads in a Military Avionics Service Maintenance Network in Taiwan

    Get PDF
    Purpose – The purpose of this paper is to investigate how different types of triad structures, and the management mechanisms adopted by the focal company, affect cooperative performance. Design/methodology/approach – This paper uses a social network perspective to examine the triad management phenomenon in the military avionics maintenance context, which is closely associated with the field of operations management. Findings – This paper demonstrates that different triad structures and management mechanisms influence perceived cooperative performance. Four main findings emerged: in a triad, a firm playing a bridging role perceives higher cooperative performance than when playing a peripheral role in the triad or being located in a fully connected triad. When a firm plays the bridging role in a triad, and has a high level of trust, this leads to higher perceived cooperative performance. When a firm plays a peripheral role in a triad, high levels of coordination mechanism combined with high levels of trust result in higher levels of perceived cooperative performance. In a fully linked triad, when the coordination mechanism is well developed, the level of trust is high, so that the resulting level of perceived cooperation is high. Originality/value – This paper extends the knowledge of triad management by providing an in-depth study of a well-defined network setting with exceptionally high-level access to the most senior executives. In practice, this paper shows how to manage differen

    GPER-induced signaling is essential for the survival of breast cancer stem cells.

    Get PDF
    G protein-coupled estrogen receptor-1 (GPER), a member of the G protein-coupled receptor (GPCR) superfamily, mediates estrogen-induced proliferation of normal and malignant breast epithelial cells. However, its role in breast cancer stem cells (BCSCs) remains unclear. Here we showed greater expression of GPER in BCSCs than non-BCSCs of three patient-derived xenografts of ER- /PR+ breast cancers. GPER silencing reduced stemness features of BCSCs as reflected by reduced mammosphere forming capacity in vitro, and tumor growth in vivo with decreased BCSC populations. Comparative phosphoproteomics revealed greater GPER-mediated PKA/BAD signaling in BCSCs. Activation of GPER by its ligands, including tamoxifen (TMX), induced phosphorylation of PKA and BAD-Ser118 to sustain BCSC characteristics. Transfection with a dominant-negative mutant BAD (Ser118Ala) led to reduced cell survival. Taken together, GPER and its downstream signaling play a key role in maintaining the stemness of BCSCs, suggesting that GPER is a potential therapeutic target for eradicating BCSCs

    Adaptive computation of multiscale entropy and its application in EEG signals for monitoring depth of anesthesia during surgery

    Get PDF
    Entropy as an estimate of complexity of the electroencephalogram is an effective parameter for monitoring the depth of anesthesia (DOA) during surgery. Multiscale entropy (MSE) is useful to evaluate the complexity of signals over different time scales. However, the limitation of the length of processed signal is a problem due to observing the variation of sample entropy (SE) on different scales. In this study, the adaptive resampling procedure is employed to replace the process of coarse-graining in MSE. According to the analysis of various signals and practical EEG signals, it is feasible to calculate the SE from the adaptive resampled signals, and it has the highly similar results with the original MSE at small scales. The distribution of the MSE of EEG during the whole surgery based on adaptive resampling process is able to show the detailed variation of SE in small scales and complexity of EEG, which could help anesthesiologists evaluate the status of patients.The Center for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan which is sponsored by National Science Council (Grant Number: NSC 100-2911-I-008-001). Also, it was supported by Chung-Shan Institute of Science & Technology in Taiwan (Grant Numbers: CSIST-095-V101 and CSIST-095-V102). Furthermore, it was supported by the National Science Foundation of China (No.50935005)
    corecore