5,247 research outputs found
Top Quark Rare Decays via Loop-Induced FCNC Interactions in Extended Mirror Fermion Model
Flavor changing neutral current (FCNC) interactions for a top quark
decays into with represents a neutral gauge or Higgs boson, and a
up- or charm-quark are highly suppressed in the Standard Model (SM) due to the
Glashow-Iliopoulos-Miami mechanism. Whilst current limits on the branching
ratios of these processes have been established at the order of from
the Large Hadron Collider experiments, SM predictions are at least nine orders
of magnitude below. In this work, we study some of these FCNC processes in the
context of an extended mirror fermion model, originally proposed to implement
the electroweak scale seesaw mechanism for non-sterile right-handed neutrinos.
We show that one can probe the process for a wide range of parameter
space with branching ratios varying from to , comparable
with various new physics models including the general two Higgs doublet model
with or without flavor violations at tree level, minimal supersymmetric
standard model with or without -parity, and extra dimension model.Comment: 30 pages, 8 figures, 2 tables and 1 appendix. Version to appear in
NP
The relationship between evaluation of elderly customer and their active aging status in community sports clubs
Managing Triads in a Military Avionics Service Maintenance Network in Taiwan
Purpose – The purpose of this paper is to investigate how different types of
triad structures, and the management mechanisms adopted by the focal company,
affect cooperative performance. Design/methodology/approach – This paper uses a
social network perspective to examine the triad management phenomenon in the
military avionics maintenance context, which is closely associated with the
field of operations management. Findings – This paper demonstrates that
different triad structures and management mechanisms influence perceived
cooperative performance. Four main findings emerged: in a triad, a firm playing
a bridging role perceives higher cooperative performance than when playing a
peripheral role in the triad or being located in a fully connected triad. When a
firm plays the bridging role in a triad, and has a high level of trust, this
leads to higher perceived cooperative performance. When a firm plays a
peripheral role in a triad, high levels of coordination mechanism combined with
high levels of trust result in higher levels of perceived cooperative
performance. In a fully linked triad, when the coordination mechanism is well
developed, the level of trust is high, so that the resulting level of perceived
cooperation is high. Originality/value – This paper extends the knowledge of
triad management by providing an in-depth study of a well-defined network
setting with exceptionally high-level access to the most senior executives. In
practice, this paper shows how to manage differen
GPER-induced signaling is essential for the survival of breast cancer stem cells.
G protein-coupled estrogen receptor-1 (GPER), a member of the G protein-coupled receptor (GPCR) superfamily, mediates estrogen-induced proliferation of normal and malignant breast epithelial cells. However, its role in breast cancer stem cells (BCSCs) remains unclear. Here we showed greater expression of GPER in BCSCs than non-BCSCs of three patient-derived xenografts of ER- /PR+ breast cancers. GPER silencing reduced stemness features of BCSCs as reflected by reduced mammosphere forming capacity in vitro, and tumor growth in vivo with decreased BCSC populations. Comparative phosphoproteomics revealed greater GPER-mediated PKA/BAD signaling in BCSCs. Activation of GPER by its ligands, including tamoxifen (TMX), induced phosphorylation of PKA and BAD-Ser118 to sustain BCSC characteristics. Transfection with a dominant-negative mutant BAD (Ser118Ala) led to reduced cell survival. Taken together, GPER and its downstream signaling play a key role in maintaining the stemness of BCSCs, suggesting that GPER is a potential therapeutic target for eradicating BCSCs
Adaptive computation of multiscale entropy and its application in EEG signals for monitoring depth of anesthesia during surgery
Entropy as an estimate of complexity of the electroencephalogram is an effective parameter for monitoring the depth of anesthesia (DOA) during surgery. Multiscale entropy (MSE) is useful to evaluate the complexity of signals over different time scales. However, the limitation of the length of processed signal is a problem due to observing the variation of sample entropy (SE) on different scales. In this study, the adaptive resampling procedure is employed to replace the process of coarse-graining in MSE. According to the analysis of various signals and practical EEG signals, it is feasible to calculate the SE from the adaptive resampled signals, and it has the highly similar results with the original MSE at small scales. The distribution of the MSE of EEG during the whole surgery based on adaptive resampling process is able to show the detailed variation of SE in small scales and complexity of EEG, which could help anesthesiologists evaluate the status of patients.The Center for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan
which is sponsored by National Science Council (Grant Number: NSC 100-2911-I-008-001). Also, it was supported by Chung-Shan Institute of Science & Technology in Taiwan (Grant Numbers: CSIST-095-V101 and CSIST-095-V102). Furthermore, it was supported by the National Science Foundation of China (No.50935005)
- …
