3,420 research outputs found
Detach and Adapt: Learning Cross-Domain Disentangled Deep Representation
While representation learning aims to derive interpretable features for
describing visual data, representation disentanglement further results in such
features so that particular image attributes can be identified and manipulated.
However, one cannot easily address this task without observing ground truth
annotation for the training data. To address this problem, we propose a novel
deep learning model of Cross-Domain Representation Disentangler (CDRD). By
observing fully annotated source-domain data and unlabeled target-domain data
of interest, our model bridges the information across data domains and
transfers the attribute information accordingly. Thus, cross-domain joint
feature disentanglement and adaptation can be jointly performed. In the
experiments, we provide qualitative results to verify our disentanglement
capability. Moreover, we further confirm that our model can be applied for
solving classification tasks of unsupervised domain adaptation, and performs
favorably against state-of-the-art image disentanglement and translation
methods.Comment: CVPR 2018 Spotligh
GPER-induced signaling is essential for the survival of breast cancer stem cells.
G protein-coupled estrogen receptor-1 (GPER), a member of the G protein-coupled receptor (GPCR) superfamily, mediates estrogen-induced proliferation of normal and malignant breast epithelial cells. However, its role in breast cancer stem cells (BCSCs) remains unclear. Here we showed greater expression of GPER in BCSCs than non-BCSCs of three patient-derived xenografts of ER- /PR+ breast cancers. GPER silencing reduced stemness features of BCSCs as reflected by reduced mammosphere forming capacity in vitro, and tumor growth in vivo with decreased BCSC populations. Comparative phosphoproteomics revealed greater GPER-mediated PKA/BAD signaling in BCSCs. Activation of GPER by its ligands, including tamoxifen (TMX), induced phosphorylation of PKA and BAD-Ser118 to sustain BCSC characteristics. Transfection with a dominant-negative mutant BAD (Ser118Ala) led to reduced cell survival. Taken together, GPER and its downstream signaling play a key role in maintaining the stemness of BCSCs, suggesting that GPER is a potential therapeutic target for eradicating BCSCs
Growth evolution of SixNy on the GaN underlayer and its effects on GaN-on-Si (111) heteroepitaxial quality
We verified that nanocrystalline SixNy with a size ranging from 4 to 6 nm appeared on the pit sidewall and preferred to reside at the pit.</p
Comfort-Centered Design of a Lightweight and Backdrivable Knee Exoskeleton
This paper presents design principles for comfort-centered wearable robots
and their application in a lightweight and backdrivable knee exoskeleton. The
mitigation of discomfort is treated as mechanical design and control issues and
three solutions are proposed in this paper: 1) a new wearable structure
optimizes the strap attachment configuration and suit layout to ameliorate
excessive shear forces of conventional wearable structure design; 2) rolling
knee joint and double-hinge mechanisms reduce the misalignment in the sagittal
and frontal plane, without increasing the mechanical complexity and inertia,
respectively; 3) a low impedance mechanical transmission reduces the reflected
inertia and damping of the actuator to human, thus the exoskeleton is
highly-backdrivable. Kinematic simulations demonstrate that misalignment
between the robot joint and knee joint can be reduced by 74% at maximum knee
flexion. In experiments, the exoskeleton in the unpowered mode exhibits 1.03 Nm
root mean square (RMS) low resistive torque. The torque control experiments
demonstrate 0.31 Nm RMS torque tracking error in three human subjects.Comment: 8 pages, 16figures, Journa
Validation of the Action Research Arm Test using item response theory in patients after stroke
Objective: To validate the unidimensionality of the Action Research Arm Test (ARAT) using Mokken analysis and to examine whether scores of the ARAT can be transformed into interval scores using Rasch analysis. Subjects and methods: A total of 351 patients with stroke were recruited from 5 rehabilitation departments located in 4 regions of Taiwan. The 19-item ARAT was administered to all the subjects by a physical therapist. The data were analysed using item response theory by non-parametric Mokken analysis followed by Rasch analysis. Results: The results supported a unidimensional scale of the 19-item ARAT by Mokken analysis, with the scalability coefficient H = 0.95. Except for the item pinch ball bearing 3rd finger and thumb'', the remaining 18 items have a consistently hierarchical order along the upper extremity function's continuum. In contrast, the Rasch analysis, with a stepwise deletion of misfit items, showed that only 4 items (grasp ball'', grasp block 5 cm(3)'', grasp block 2.5 cm(3)'', and grip tube 1 cm(3)'') fit the Rasch rating scale model's expectations. Conclusion: Our findings indicated that the 19-item ARAT constituted a unidimensional construct measuring upper extremity function in stroke patients. However, the results did not support the premise that the raw sum scores of the ARAT can be transformed into interval Rasch scores. Thus, the raw sum scores of the ARAT can provide information only about order of patients on their upper extremity functional abilities, but not represent each patient's exact functioning
Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment.
Nanotheranostics with integrated diagnostic and therapeutic functions show exciting potentials towards precision nanomedicine. However, targeted delivery of nanotheranostics is hindered by several biological barriers. Here, we report the development of a dual size/charge- transformable, Trojan-Horse nanoparticle (pPhD NP) for delivery of ultra-small, full active pharmaceutical ingredients (API) nanotheranostics with integrated dual-modal imaging and trimodal therapeutic functions. pPhD NPs exhibit ideal size and charge for drug transportation. In tumour microenvironment, pPhD NPs responsively transform to full API nanotheranostics with ultra-small size and higher surface charge, which dramatically facilitate the tumour penetration and cell internalisation. pPhD NPs enable visualisation of biodistribution by near-infrared fluorescence imaging, tumour accumulation and therapeutic effect by magnetic resonance imaging. Moreover, the synergistic photothermal-, photodynamic- and chemo-therapies achieve a 100% complete cure rate on both subcutaneous and orthotopic oral cancer models. This nanoplatform with powerful delivery efficiency and versatile theranostic functions shows enormous potentials to improve cancer treatment
- …
