2,498 research outputs found
Accurate prediction of gene feedback circuit behavior from component properties
A basic assumption underlying synthetic biology is that analysis of genetic circuit elements, such as regulatory proteins and promoters, can be used to understand and predict the behavior of circuits containing those elements. To test this assumption, we used time‐lapse fluorescence microscopy to quantitatively analyze two autoregulatory negative feedback circuits. By measuring the gene regulation functions of the corresponding repressor–promoter interactions, we accurately predicted the expression level of the autoregulatory feedback loops, in molecular units. This demonstration that quantitative characterization of regulatory elements can predict the behavior of genetic circuits supports a fundamental requirement of synthetic biology
Logarithmic roughening in a growth process with edge evaporation
Roughening transitions are often characterized by unusual scaling properties.
As an example we investigate the roughening transition in a solid-on-solid
growth process with edge evaporation [Phys. Rev. Lett. 76, 2746 (1996)], where
the interface is known to roughen logarithmically with time. Performing
high-precision simulations we find appropriate scaling forms for various
quantities. Moreover we present a simple approximation explaining why the
interface roughens logarithmically.Comment: revtex, 6 pages, 7 eps figure
L-selectin mediated leukocyte tethering in shear flow is controlled by multiple contacts and cytoskeletal anchorage facilitating fast rebinding events
L-selectin mediated tethers result in leukocyte rolling only above a
threshold in shear. Here we present biophysical modeling based on recently
published data from flow chamber experiments (Dwir et al., J. Cell Biol. 163:
649-659, 2003) which supports the interpretation that L-selectin mediated
tethers below the shear threshold correspond to single L-selectin carbohydrate
bonds dissociating on the time scale of milliseconds, whereas L-selectin
mediated tethers above the shear threshold are stabilized by multiple bonds and
fast rebinding of broken bonds, resulting in tether lifetimes on the timescale
of seconds. Our calculations for cluster dissociation suggest that
the single molecule rebinding rate is of the order of Hz. A similar
estimate results if increased tether dissociation for tail-truncated L-selectin
mutants above the shear threshold is modeled as diffusive escape of single
receptors from the rebinding region due to increased mobility. Using computer
simulations, we show that our model yields first order dissociation kinetics
and exponential dependence of tether dissociation rates on shear stress. Our
results suggest that multiple contacts, cytoskeletal anchorage of L-selectin
and local rebinding of ligand play important roles in L-selectin tether
stabilization and progression of tethers into persistent rolling on endothelial
surfaces.Comment: 9 pages, Revtex, 4 Postscript figures include
The Dynamics of Hybrid Metabolic-Genetic Oscillators
The synthetic construction of intracellular circuits is frequently hindered
by a poor knowledge of appropriate kinetics and precise rate parameters. Here,
we use generalized modeling (GM) to study the dynamical behavior of topological
models of a family of hybrid metabolic-genetic circuits known as
"metabolators." Under mild assumptions on the kinetics, we use GM to
analytically prove that all explicit kinetic models which are topologically
analogous to one such circuit, the "core metabolator," cannot undergo Hopf
bifurcations. Then, we examine more detailed models of the metabolator.
Inspired by the experimental observation of a Hopf bifurcation in a
synthetically constructed circuit related to the core metabolator, we apply GM
to identify the critical components of the synthetically constructed
metabolator which must be reintroduced in order to recover the Hopf
bifurcation. Next, we study the dynamics of a re-wired version of the core
metabolator, dubbed the "reverse" metabolator, and show that it exhibits a
substantially richer set of dynamical behaviors, including both local and
global oscillations. Prompted by the observation of relaxation oscillations in
the reverse metabolator, we study the role that a separation of genetic and
metabolic time scales may play in its dynamics, and find that widely separated
time scales promote stability in the circuit. Our results illustrate a generic
pipeline for vetting the potential success of a potential circuit design,
simply by studying the dynamics of the corresponding generalized model
Boolean networks with reliable dynamics
We investigated the properties of Boolean networks that follow a given
reliable trajectory in state space. A reliable trajectory is defined as a
sequence of states which is independent of the order in which the nodes are
updated. We explored numerically the topology, the update functions, and the
state space structure of these networks, which we constructed using a minimum
number of links and the simplest update functions. We found that the clustering
coefficient is larger than in random networks, and that the probability
distribution of three-node motifs is similar to that found in gene regulation
networks. Among the update functions, only a subset of all possible functions
occur, and they can be classified according to their probability. More
homogeneous functions occur more often, leading to a dominance of canalyzing
functions. Finally, we studied the entire state space of the networks. We
observed that with increasing systems size, fixed points become more dominant,
moving the networks close to the frozen phase.Comment: 11 Pages, 15 figure
Boolean versus continuous dynamics on simple two-gene modules
We investigate the dynamical behavior of simple modules composed of two genes
with two or three regulating connections. Continuous dynamics for mRNA and
protein concentrations is compared to a Boolean model for gene activity. Using
a generalized method, we study within a single framework different continuous
models and different types of regulatory functions, and establish conditions
under which the system can display stable oscillations. These conditions
concern the time scales, the degree of cooperativity of the regulating
interactions, and the signs of the interactions. Not all models that show
oscillations under Boolean dynamics can have oscillations under continuous
dynamics, and vice versa.Comment: 8 pages, 10 figure
Optimizing periodicity and polymodality in noise-induced genetic oscillators
Many cellular functions are based on the rhythmic organization of biological
processes into self-repeating cascades of events. Some of these periodic
processes, such as the cell cycles of several species, exhibit conspicuous
irregularities in the form of period skippings, which lead to polymodal
distributions of cycle lengths. A recently proposed mechanism that accounts for
this quantized behavior is the stabilization of a Hopf-unstable state by
molecular noise. Here we investigate the effect of varying noise in a model
system, namely an excitable activator-repressor genetic circuit, that displays
this noise-induced stabilization effect. Our results show that an optimal noise
level enhances the regularity (coherence) of the cycles, in a form of coherence
resonance. Similar noise levels also optimize the multimodal nature of the
cycle lengths. Together, these results illustrate how molecular noise within a
minimal gene regulatory motif confers robust generation of polymodal patterns
of periodicity.Comment: 9 pages, 6 figure
How does an interacting many-body system tunnel through a potential barrier to open space?
The tunneling process in a many-body system is a phenomenon which lies at the
very heart of quantum mechanics. It appears in nature in the form of
alpha-decay, fusion and fission in nuclear physics, photoassociation and
photodissociation in biology and chemistry. A detailed theoretical description
of the decay process in these systems is a very cumbersome problem, either
because of very complicated or even unknown interparticle interactions or due
to a large number of constitutent particles. In this work, we theoretically
study the phenomenon of quantum many-body tunneling in a more transparent and
controllable physical system, in an ultracold atomic gas. We analyze a full,
numerically exact many-body solution of the Schr\"odinger equation of a
one-dimensional system with repulsive interactions tunneling to open space. We
show how the emitted particles dissociate or fragment from the trapped and
coherent source of bosons: the overall many-particle decay process is a quantum
interference of single-particle tunneling processes emerging from sources with
different particle numbers taking place simultaneously. The close relation to
atom lasers and ionization processes allows us to unveil the great relevance of
many-body correlations between the emitted and trapped fractions of the
wavefunction in the respective processes.Comment: 18 pages, 4 figures (7 pages, 2 figures supplementary information
Analytical study of an exclusive genetic switch
The nonequilibrium stationary state of an exclusive genetic switch is
considered. The model comprises two competing species and a single binding site
which, when bound to by a protein of one species, causes the other species to
be repressed. The model may be thought of as a minimal model of the power
struggle between two competing parties. Exact solutions are given for the
limits of vanishing binding/unbinding rates and infinite binding/unbinding
rates. A mean field theory is introduced which is exact in the limit of
vanishing binding/unbinding rates. The mean field theory and numerical
simulations reveal that generically bistability occurs and the system is in a
symmetry broken state. An exact perturbative solution which in principle allows
the nonequilibrium stationary state to be computed is also developed and
computed to first and second order.Comment: 28 pages, 6 figure
- …
