11,049 research outputs found
Coherent-state phase concentration by quantum probabilistic amplification
We propose novel coherent-state phase concentration by probabilistic
measurement-induced ampli- fication. The amplification scheme uses novel
architecture, thermal noise addition (instead of single photon addition)
followed by feasible multiple photon subtraction using realistic photon-number
resolving detector. It allows to substantially amplify weak coherent states and
simultaneously reduce their phase uncertainty, contrary to the deterministic
amplifier
Experimentally feasible quantum erasure-correcting code for continuous variables
We devise a scheme that protects quantum coherent states of light from
probabilistic losses, thus achieving the first continuous-variable quantum
erasure-correcting code. If the occurrence of erasures can be probed, then the
decoder enables, in principle, a perfect recovery of the original light states.
Otherwise, if supplemented with postselection based on homodyne detection, this
code can be turned into an efficient erasure-filtration scheme. The
experimental feasibility of the proposed protocol is carefully addressed
Phase fluctuations in atomic Bose gases
We improve on the Popov theory for partially Bose-Einstein condensed atomic
gases by treating the phase fluctuations exactly. As a result, the theory
becomes valid in arbitrary dimensions and is able to describe the
low-temperature crossover between three, two and one-dimensional Bose gases,
which is currently being explored experimentally. We consider both homogeneous
and trapped Bose gases.Comment: 4 pages. Title changed Major changes involve extension of theory to
include trapped Bose gases. Deletion of reference to and comparison with
hydrogen experiment. Due to these changes, second author added. Modified
manuscript accepted for PR
EEG source imaging assists decoding in a face recognition task
EEG based brain state decoding has numerous applications. State of the art
decoding is based on processing of the multivariate sensor space signal,
however evidence is mounting that EEG source reconstruction can assist
decoding. EEG source imaging leads to high-dimensional representations and
rather strong a priori information must be invoked. Recent work by Edelman et
al. (2016) has demonstrated that introduction of a spatially focal source space
representation can improve decoding of motor imagery. In this work we explore
the generality of Edelman et al. hypothesis by considering decoding of face
recognition. This task concerns the differentiation of brain responses to
images of faces and scrambled faces and poses a rather difficult decoding
problem at the single trial level. We implement the pipeline using spatially
focused features and show that this approach is challenged and source imaging
does not lead to an improved decoding. We design a distributed pipeline in
which the classifier has access to brain wide features which in turn does lead
to a 15% reduction in the error rate using source space features. Hence, our
work presents supporting evidence for the hypothesis that source imaging
improves decoding
Infrared Spectra of Meteoritic SiC Grains
We present here the first infrared spectra of meteoritic SiC grains. The
mid-infrared transmission spectra of meteoritic SiC grains isolated from the
Murchison meteorite were measured in the wavelength range 2.5--16.5 micron, in
order to make available the optical properties of presolar SiC grains. These
grains are most likely stellar condensates with an origin predominately in
carbon stars. Measurements were performed on two different extractions of
presolar SiC from the Murchison meteorite. The two samples show very different
spectral appearance due to different grain size distributions. The spectral
feature of the smaller meteoritic SiC grains is a relatively broad absorption
band found between the longitudinal and transverse lattice vibration modes
around 11.3 micron, supporting the current interpretation about the presence of
SiC grains in carbon stars. In contrast to this, the spectral feature of the
large (> 5 micron) grains has an extinction minimum around 10 micron. The
obtained spectra are compared with commercially available SiC grains and the
differences are discussed. This comparison shows that the crystal structure
(e.g., beta-SiC versus alpha-SiC) of SiC grains plays a minor role on the
optical signature of SiC grains compared to e.g. grain size.Comment: 7 pages, 6 figures. To appear in A&
Squeezed state purification with linear optics and feed forward
A scheme for optimal and deterministic linear optical purification of mixed
squeezed Gaussian states is proposed and experimentally demonstrated. The
scheme requires only linear optical elements and homodyne detectors, and allows
the balance between purification efficacy and squeezing degradation to be
controlled. One particular choice of parameters gave a ten-fold reduction of
the thermal noise with a corresponding squeezing degradation of only 11%. We
prove optimality of the protocol, and show that it can be used to enhance the
performance of quantum informational protocols such as dense coding and
entanglement generation.Comment: 4 pages, 3 figure
Observation of twin beam correlations and quadrature entanglement by frequency doubling in a two-port resonator
We demonstrate production of quantum correlated and entangled beams by second
harmonic generation in a nonlinear resonator with two output ports. The output
beams at wavelength 428.5 nm exhibit 0.9 dB of nonclassical intensity
correlations and 0.3 dB of entanglement.Comment: 5 pages, 7 figure
Pinning of stripes by local structural distortions in cuprate high-Tc superconductors
We study the spin-density wave (stripe) instability in lattices with mixed
low-temperature orthorhombic (LTO) and low-temperature tetragonal (LTT) crystal
symmetry. Within an explicit mean-field model it is shown how local LTT regions
act as pinning centers for static stripe formation. We calculate the
modulations in the local density of states near these local stripe regions and
find that mainly the coherence peaks and the van Hove singularity (VHS) are
spatially modulated. Lastly, we use the real-space approach to simulate recent
tunneling data in the overdoped regime where the VHS has been detected by
utilizing local normal state regions.Comment: Conference proceedings for Stripes1
Experimental determination of the degree of quantum polarisation of continuous variable states
We demonstrate excitation-manifold resolved polarisation characterisation of
continuous-variable (CV) quantum states. In contrast to traditional
characterisation of polarisation that is based on the Stokes parameters, we
experimentally determine the Stokes vector of each excitation manifold
separately. Only for states with a given photon number does the methods
coincide. For states with an indeterminate photon number, for example Gaussian
states, the employed method gives a richer and more accurate description. We
apply the method both in theory and in experiment to some common states to
demonstrate its advantages.Comment: 5 page
Efficient calculation of local dose distribution for response modelling in proton and ion beams
We present an algorithm for fast and accurate computation of the local dose
distribution in MeV beams of protons, carbon ions or other heavy-charged
particles. It uses compound Poisson-process modelling of track interaction and
succesive convolutions for fast computation. It can handle mixed particle
fields over a wide range of fluences. Since the local dose distribution is the
essential part of several approaches to model detector efficiency or cellular
response it has potential use in ion-beam dosimetry and radiotherapy.Comment: 9 pages, 3 figure
- …
