1,705 research outputs found
Dynamics and gravitational wave signature of collapsar formation
We perform 3+1 general relativistic simulations of rotating core collapse in the context of the collapsar model for long gamma-ray bursts. We employ a realistic progenitor, rotation based on results of stellar evolution calculations, and a simplified equation of state. Our simulations track self-consistently collapse, bounce, the postbounce phase, black hole formation, and the subsequent early hyperaccretion phase. We extract gravitational waves from the spacetime curvature and identify a unique gravitational wave signature associated with the early phase of collapsar formatio
Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine
Background: Calcitonin gene–related peptide (CGRP) may have a causative role in migraine. We therefore hypothesized that a CGRP-receptor antagonist might be effective in the treatment of migraine attacks.
Methods: In an international, multicenter, double-blind, randomized clinical trial of BIBN 4096 BS, a highly specific and potent nonpeptide CGRP-receptor antagonist, 126 patients with migraine received one of the following: placebo or 0.25, 0.5, 1, 2.5, 5, or 10 mg of BIBN 4096 BS intravenously over a period of 10 minutes. A group-sequential adaptive treatment-assignment design was used to minimize the number of patients exposed.
Results: The 2.5-mg dose was selected, with a response rate of 66 percent, as compared with 27 percent for placebo (P=0.001). The BIBN 4096 BS group as a whole had a response rate of 60 percent. Significant superiority over placebo was also observed with respect to most secondary end points: the pain-free rate at 2 hours; the rate of sustained response over a period of 24 hours; the rate of recurrence of headache; improvement in nausea, photophobia, phonophobia, and functional capacity; and the time to meaningful relief. An effect was apparent after 30 minutes and increased over the next few hours. The overall rate of adverse events was 25 percent after the 2.5-mg dose of the drug and 20 percent for the BIBN 4096 BS group as a whole, as compared with 12 percent for placebo. The most frequent side effect was paresthesia. There were no serious adverse events.
Conclusions: The CGRP antagonist BIBN 4096 BS was effective in treating acute attacks of migraine
Additional outcomes and subgroup analyses of NXY-059 for acute ischemic stroke in the SAINT I trial
<p><b>Background and Purpose:</b> NXY-059 is a free radical-trapping neuroprotectant demonstrated to reduce disability from ischemic stroke. We conducted analyses on additional end points and sensitivity analyses to confirm our findings.</p>
<p><b>Methods:</b> We randomized 1722 patients with acute ischemic stroke to a 72-hour infusion of placebo or intravenous NXY-059 within 6 hours of stroke onset. The primary outcome was disability at 90 days, as measured by the modified Rankin Scale (mRS), a 6-point scale ranging from 0 (no residual symptoms) to 5 (bed-bound, requiring constant care). Additional and exploratory analyses included mRS at 7 and 30 days; subgroup interactions with final mRS; assessments of activities of daily living by Barthel index; and National Institutes of Health Stroke Scale (NIHSS) neurological scores at 7 and 90 days.</p>
<p><b>Results:</b> NXY-059 significantly improved the distribution of the mRS disability score compared with placebo at 7, 30, and 90 days (Cochran-Mantel-Haenszel test P=0.002, 0.004, 0.038, respectively; 90-day common odds ratio 1.20; 95% CI, 1.01 to 1.42). The benefit was not attributable to any specific baseline characteristic, stratification variable or subgroup interaction. Neurological scores were improved at 7 days (odds ratio [OR], 1.46; 95% CI, 1.13, 1.89; P=0.003) and the Barthel index was improved at 7 and 30 days (OR, 1.55; 95% CI, 1.22, 1.98; P<0.0001; OR, 1.27; 95% CI, 1.01, 1.59; P=0.02).</p>
<p><b>Conclusions:</b> NXY-059 within 6 hours of acute ischemic stroke significantly reduced disability. Benefit on neurological scores and activities of daily living was detectable early but not significant at 90 days; however, our trial was underpowered to measure effects on the neurological examination. The benefit on disability is not confounded by interactions and is supported by other outcome measures.</p>
Dynamics and Gravitational Wave Signature of Collapsar Formation
We perform 3+1 general relativistic simulations of rotating core collapse in the context of the collapsar model for long gamma-ray bursts. We employ a realistic progenitor, rotation based on results of stellar evolution calculations, and a simplified equation of state. Our simulations track self-consistently collapse, bounce, the postbounce phase, black hole formation, and the subsequent early hyperaccretion phase. We extract gravitational waves from the spacetime curvature and identify a unique gravitational wave signature associated with the early phase of collapsar formation
EHMTI-0362. Non-invasive vagus nerve stimulation with gammacore® for prevention and acute treatment of chronic cluster headache: report from the extension phase of the preva study
Spin effects in Bose-Glass phases
We study the mechanism of formation of Bose glass (BG) phases in the spin-1
Bose Hubbard model when diagonal disorder is introduced. To this aim, we
analyze first the phase diagram in the zero-hopping limit, there disorder
induces superposition between Mott insulator (MI) phases with different filling
numbers. Then BG appears as a compressible but still insulating phase. The
phase diagram for finite hopping is also calculated with the Gutzwiller
approximation. The bosons' spin degree of freedom introduces another scattering
channel in the two-body interaction modifying the stability of MI regions with
respect to the action of disorder. This leads to some peculiar phenomena such
as the creation of BG of singlets, for very strong spin correlation, or the
disappearance of BG phase in some particular cases where fluctuations are not
able to mix different MI regions
Characteristic extraction in numerical relativity: binary black hole merger waveforms at null infinity
The accurate modeling of gravitational radiation is a key issue for
gravitational wave astronomy. As simulation codes reach higher accuracy,
systematic errors inherent in current numerical relativity wave-extraction
methods become evident, and may lead to a wrong astrophysical interpretation of
the data. In this paper, we give a detailed description of the
Cauchy-characteristic extraction technique applied to binary black hole
inspiral and merger evolutions to obtain gravitational waveforms that are
defined unambiguously, that is, at future null infinity. By this method we
remove finite-radius approximations and the need to extrapolate data from the
near zone. Further, we demonstrate that the method is free of gauge effects and
thus is affected only by numerical error. Various consistency checks reveal
that energy and angular momentum are conserved to high precision and agree very
well with extrapolated data. In addition, we revisit the computation of the
gravitational recoil and find that finite radius extrapolation very well
approximates the result at \scri. However, the (non-convergent) systematic
differences to extrapolated data are of the same order of magnitude as the
(convergent) discretisation error of the Cauchy evolution hence highlighting
the need for correct wave-extraction.Comment: 41 pages, 8 figures, 2 tables, added references, fixed typos. Version
matches published version
Are moving punctures equivalent to moving black holes?
When simulating the inspiral and coalescence of a binary black-hole system,
special care needs to be taken in handling the singularities. Two main
techniques are used in numerical-relativity simulations: A first and more
traditional one ``excises'' a spatial neighbourhood of the singularity from the
numerical grid on each spacelike hypersurface. A second and more recent one,
instead, begins with a ``puncture'' solution and then evolves the full
3-metric, including the singular point. In the continuum limit, excision is
justified by the light-cone structure of the Einstein equations and, in
practice, can give accurate numerical solutions when suitable discretizations
are used. However, because the field variables are non-differentiable at the
puncture, there is no proof that the moving-punctures technique is correct,
particularly in the discrete case. To investigate this question we use both
techniques to evolve a binary system of equal-mass non-spinning black holes. We
compare the evolution of two curvature 4-scalars with proper time along the
invariantly-defined worldline midway between the two black holes, using
Richardson extrapolation to reduce the influence of finite-difference
truncation errors. We find that the excision and moving-punctures evolutions
produce the same invariants along that worldline, and thus the same spacetimes
throughout that worldline's causal past. This provides convincing evidence that
moving-punctures are indeed equivalent to moving black holes.Comment: 4 pages, 3 eps color figures; v2 = major revisions to introduction &
conclusions based on referee comments, but no change in analysis or result
Conseil-santé dans la médecine de premier recours, partie 2
Les maladies non transmissibles (MNT, en anglais «non-communicable diseases») ont gagné du terrain dans le monde entier. Les approches de conseil fourni au cabinet médical ont déjà été présentées dans un premier article. Le présent article se
consacre aux conditions permettant à ces approches de déployer leur efficacité au niveau de la population. Ceci est illustré sur la base des programmes suisses actuels «Vivre sans tabac», PAPRICA et «Coaching Santé» ainsi que de l’exemple historique «Ça débouche sur quoi?»
- …
