1,059 research outputs found
Phonon emission and absorption in the fractional quantum Hall effect
We investigate the time dependent thermal relaxation of a two-dimensional
electron system in the fractional quantum Hall regime where ballistic phonons
are used to heat up the system to a non-equilibrium temperature. The thermal
relaxation of a 2DES at can be described in terms of a broad band
emission of phonons, with a temperature dependence proportional to . In
contrast, the relaxation at fractional filling is characterized by
phonon emission around a single energy, the magneto-roton gap. This leads to a
strongly reduced energy relaxation rate compared to with only a weak
temperature dependence for temperatures 150 mK 400 mK.Comment: 4 pages, 3 figures; 14th International Conference on High Magnetic
Fields in Semiconductor Physics, September 24-29, 2000, Matsue, Japa
Hydroxylation of polypropylene using the monooxygenase mutant 139-3 from Bacillus megaterium BM3
Enzymatic hydroxylation of polypropylene (PP) was investigated in order to increase hydrophilicity. A mutant (139-3) of the P450monooxygenase from Bacillus megaterium expressed in E. coli DH5α was purified using anion exchange chromatography. Hydroxylation of PP fabrics led to a dramatic increase of hydrophilicity as indicated by a water drop dissipation time of below 1 s compared to the hydrophobic reference material. Likewise, a 4.9 cm increase of rising height was measured which remained consistent after 144 h of storage. Similarly, enzymatic hydroxylation of PP films lead to a decrease of the WCA from 104.6° to 77.3° with no major change after exposure to air for 6 days. Using X-ray photoelectron spectroscopy, an increase in normalized atomic concentrations of oxygen from 1.40 to 4.98% for the CO-inhibited and enzyme treated sample, respectively, was measured confirming enzymatic hydroxylation.This study was performed within Austrian Centre of Industrial Biotechnology ACIB, the MacroFun project and COST Action 868. This work has been supported by the Federal Ministry of Economy, Family and Youth (BMWFJ), the Federal Ministry of Traffic, Innovation and Technology (bmvit), the Styrian Business Promotion Agency SFG, the Standortagentur Tirol and ZIT - Technology Agency of the City of Vienna through the COMET- Funding Program managed by the Austrian Research Promotion Agency FFG
Top Squarks and Bottom Squarks in the MSSM with Complex Parameters
We present a phenomenological study of top squarks (~t_1,2) and bottom
squarks (~b_1,2) in the Minimal Supersymmetric Standard Model (MSSM) with
complex parameters A_t, A_b, \mu and M_1. In particular we focus on the CP
phase dependence of the branching ratios of (~t_1,2) and (~b_1,2) decays. We
give the formulae of the two-body decay widths and present numerical results.
We find that the effect of the phases on the (~t_1,2) and (~b_1,2) decays can
be quite significant in a large region of the MSSM parameter space. This could
have important implications for (~t_1,2) and (~b_1,2) searches and the MSSM
parameter determination in future collider experiments. We have also estimated
the accuracy expected in the determination of the parameters of ~t_i and ~b_i
by a global fit of the measured masses, decay branching ratios and production
cross sections at e^+ e^- linear colliders with polarized beams. Analysing two
scenarios, we find that the fundamental parameters apart from A_t and A_b can
be determined with errors of 1% to 2%, assuming an integrated luminosity of 1
ab^-1 and a sufficiently large c.m.s. energy to produce also the heavier ~t_2
and ~b_2 states. The parameter A_t can be determined with an error of 2 - 3%,
whereas the error on A_b is likely to be of the order of 50%.Comment: 31 pages, 8 figures, comments and references added, conclusions
unchanged; version to appear in Phys. Rev.
NLO QCD bottom corrections to Higgs boson production in the MSSM
We present a calculation of the two-loop bottom-sbottom-gluino contributions
to Higgs boson production via gluon fusion in the MSSM. The calculation is
based on an asymptotic expansion in the masses of the supersymmetric particles,
which are assumed to be much heavier than the bottom quark and the Higgs
bosons. We obtain explicit analytic results that allow for a straightforward
identification of the dominant contributions in the NLO bottom corrections. We
emphasize the interplay between the calculations of the masses and the
production cross sections of the Higgs bosons, discussing sensible choices of
renormalization scheme for the parameters in the bottom/sbottom sector.Comment: 25 pages, 4 figures. v2: references and two figures added, version
published in JHE
Coherent coupling of two quantum dots embedded in an Aharonov-Bohm ring
We define two laterally gated small quantum dots (~ 15 electrons) in an
Aharonov-Bohm geometry in which the coupling between the two dots can be
broadly changed. For weakly coupled quantum dots we find Aharonov-Bohm
oscillations. In an intermediate coupling regime we concentrate on the
molecular states of the double dot and extract the magnetic field dependence of
the coherent coupling.Comment: 6 pages, 4 figure
Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms
Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs
Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope
The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total
live time of 863 days, are used to measure the oscillation parameters of
atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20
GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon
neutrinos of such energies crossing the Earth. The parameters determining the
oscillation of atmospheric neutrinos are extracted by fitting the event rate as
a function of the ratio of the estimated neutrino energy and reconstructed
flight path through the Earth. Measurement contours of the oscillation
parameters in a two-flavour approximation are derived. Assuming maximum mixing,
a mass difference of eV is
obtained, in good agreement with the world average value.Comment: 9 pages, 5 figure
Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope
The ANTARES telescope is well-suited for detecting astrophysical transient
neutrino sources as it can observe a full hemisphere of the sky at all times
with a high duty cycle. The background due to atmospheric particles can be
drastically reduced, and the point-source sensitivity improved, by selecting a
narrow time window around possible neutrino production periods. Blazars, being
radio-loud active galactic nuclei with their jets pointing almost directly
towards the observer, are particularly attractive potential neutrino point
sources, since they are among the most likely sources of the very high-energy
cosmic rays. Neutrinos and gamma rays may be produced in hadronic interactions
with the surrounding medium. Moreover, blazars generally show high time
variability in their light curves at different wavelengths and on various time
scales. This paper presents a time-dependent analysis applied to a selection of
flaring gamma-ray blazars observed by the FERMI/LAT experiment and by TeV
Cherenkov telescopes using five years of ANTARES data taken from 2008 to 2012.
The results are compatible with fluctuations of the background. Upper limits on
the neutrino fluence have been produced and compared to the measured gamma-ray
spectral energy distribution.Comment: 27 pages, 16 figure
The ANTARES Collaboration: Contributions to ICRC 2017 Part I: Neutrino astronomy (diffuse fluxes and point sources)
Papers on neutrino astronomy (diffuse fluxes and point sources, prepared for
the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by
the ANTARES Collaboratio
Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS
The AMADEUS system is an integral part of the ANTARES neutrino telescope in
the Mediterranean Sea. The project aims at the investigation of techniques for
acoustic neutrino detection in the deep sea. Installed at a depth of more than
2000m, the acoustic sensors of AMADEUS are based on piezo-ceramics elements for
the broad-band recording of signals with frequencies ranging up to 125kHz.
AMADEUS was completed in May 2008 and comprises six "acoustic clusters", each
one holding six acoustic sensors that are arranged at distances of roughly 1m
from each other. The clusters are installed with inter-spacings ranging from
15m to 340m. Acoustic data are continuously acquired and processed at a
computer cluster where online filter algorithms are applied to select a
high-purity sample of neutrino-like signals. 1.6 TB of data were recorded in
2008 and 3.2 TB in 2009. In order to assess the background of neutrino-like
signals in the deep sea, the characteristics of ambient noise and transient
signals have been investigated. In this article, the AMADEUS system will be
described and recent results will be presented.Comment: 7 pages, 8 figures. Proceedings of ARENA 2010, the 4th International
Workshop on Acoustic and Radio EeV Neutrino Detection Activitie
- …
