110 research outputs found
Growth characteristics in individuals with osteogenesis imperfecta in North America: results from a multicenter study.
PurposeOsteogenesis imperfecta (OI) predisposes people to recurrent fractures, bone deformities, and short stature. There is a lack of large-scale systematic studies that have investigated growth parameters in OI.MethodsUsing data from the Linked Clinical Research Centers, we compared height, growth velocity, weight, and body mass index (BMI) in 552 individuals with OI. Height, weight, and BMI were plotted on Centers for Disease Control and Prevention normative curves.ResultsIn children, the median z-scores for height in OI types I, III, and IV were -0.66, -6.91, and -2.79, respectively. Growth velocity was diminished in OI types III and IV. The median z-score for weight in children with OI type III was -4.55. The median z-scores for BMI in children with OI types I, III, and IV were 0.10, 0.91, and 0.67, respectively. Generalized linear model analyses demonstrated that the height z-score was positively correlated with the severity of the OI subtype (P < 0.001), age, bisphosphonate use, and rodding (P < 0.05).ConclusionFrom the largest cohort of individuals with OI, we provide median values for height, weight, and BMI z-scores that can aid the evaluation of overall growth in the clinic setting. This study is an important first step in the generation of OI-specific growth curves
The Transcriptional Response to DNA-Double-Strand Breaks in Physcomitrella patens
The model bryophyte Physcomitrella patens is unique among plants in supporting the generation of mutant alleles by facile homologous recombination-mediated gene targeting (GT). Reasoning that targeted transgene integration occurs through the capture of transforming DNA by the homology-dependent pathway for DNA double-strand break (DNA-DSB) repair, we analysed the genome-wide transcriptomic response to bleomycin-induced DNA damage and generated mutants in candidate DNA repair genes. Massively parallel (Illumina) cDNA sequencing identified potential participants in gene targeting. Transcripts encoding DNA repair proteins active in multiple repair pathways were significantly up-regulated. These included Rad51, CtIP, DNA ligase 1, Replication protein A and ATR in homology-dependent repair, Xrcc4, DNA ligase 4, Ku70 and Ku80 in non-homologous end-joining and Rad1, Tebichi/polymerase theta, PARP in microhomology-mediated end-joining. Differentially regulated cell-cycle components included up-regulated Rad9 and Hus1 DNA-damage-related checkpoint proteins and down-regulated D-type cyclins and B-type CDKs, commensurate with the imposition of a checkpoint at G2 of the cell cycle characteristic of homology-dependent DNA-DSB repair. Candidate genes, including ATP-dependent chromatin remodelling helicases associated with repair and recombination, were knocked out and analysed for growth defects, hypersensitivity to DNA damage and reduced GT efficiency. Targeted knockout of PpCtIP, a cell-cycle activated mediator of homology-dependent DSB resection, resulted in bleomycin-hypersensitivity and greatly reduced GT efficiency
The organization of Physcomitrella patens RAD51 genes is unique among eukaryotic organisms
Preparatory studies of composite mesenchymal stem cell islets for application in intraportal islet transplantation
Abstract Background. Low engraftment and adverse immune reactions hamper the success rate of clinical islet transplantation. In this study, we investigated the capacity of human mesenchymal stem cells (MSCs) to adhere to human islets of Langerhans and their effects in immune modulation and during blood interactions in vitro. Methods. Composite MSC-islets were formed by suspension co-culture, and the phenotype was evaluated by confocal microscopy. Islet function was assessed by dynamic insulin release in response to glucose in vitro. Mixed lymphocyte-islet reactions (MLIR) and the tubing blood loop model were utilized as in vitro tools to analyse the effect of MSCs on the innate and adaptive immune reactions triggered by the islets. Results. MSCs rapidly adhered to islets and spread out to cover the islet surface. Insulin expression and secretion were sustained with the MSC coating. MSC-coated islets showed unaffected reactions with blood in vitro in comparison to control islets. Furthermore, MSCs suppressed lymphocyte proliferation induced by islet cells in MLIR. Conclusion. We conclude that it is possible to create composite MSC-islets to enable delivery of the MSCs by utilizing the adhesive capacity of the MSCs. This could have beneficial immunosuppressive effects in optimizing pancreatic islet transplantation.</p
Improving Prognostication amongst Patients Undergoing Liver Transplantation for Hepatocellular Carcinoma: An International, 16-Center Study to Validate and Recalibrate HALTHCC
The RAD51 and DMC1 homoeologous genes of bread wheat: cloning, molecular characterization and expression analysis
<p>Abstract</p> <p>Background</p> <p>Meiotic recombination in eukaryotes requires two homologues of the <it>E. coli </it>RecA proteins: Rad51 and Dmc1. Both proteins play important roles in the binding of single stranded DNA, homology search, strand invasion and strand exchange. Meiotic recombination has been well studied in Arabidopsis, rice, maize and the orthologues of <it>RAD51 </it>and <it>DMC1 </it>have been characterized. However genetic analysis of the <it>RAD51 </it>and <it>DMC1 </it>genes in bread wheat has been hampered due to the absence of complete sequence information and because of the existence of multiple copies of each gene in the hexaploid wheat genome.</p> <p>Findings</p> <p>In this study we have identified that <it>TaRAD51 </it>and <it>TaDMC1 </it>homoeologues are located on group 7 and group 5 chromosomes of hexaploid wheat, respectively. Comparative sequence analysis of cDNA derived from the <it>TaRAD51 </it>and <it>TaDMC1 </it>homoeologues revealed limited sequence divergence at both the nucleotide and the amino acid level. Indeed, comparisons between the predicted amino acid sequences of <it>TaRAD51 </it>and <it>TaDMC1 </it>and those of other eukaryotes reveal a high degree of evolutionary conservation. Despite the high degree of sequence conservation at the nucleotide level, genome-specific primers for cDNAs of <it>TaRAD51 </it>and <it>TaDMC1 </it>were developed to evaluate expression patterns of individual homoeologues during meiosis. QRT-PCR analysis showed that expression of the <it>TaRAD51 </it>and <it>TaDMC1 </it>cDNA homoeologues was largely restricted to meiotic tissue, with elevated levels observed during the stages of prophase I when meiotic recombination occurs. All three homoeologues of both strand-exchange proteins (<it>TaRAD51 </it>and <it>TaDMC1</it>) are expressed in wheat.</p> <p>Conclusions</p> <p>Bread wheat contains three expressed copies of each of the <it>TaRAD51 </it>and <it>TaDMC1 </it>homoeologues. While differences were detected between the three cDNA homoeologues of <it>TaRAD51 </it>as well as the three homoeologues of <it>TaDMC1</it>, it is unlikely that the predicted amino acid substitutions would have an effect on the protein structure, based on our three-dimensional structure prediction analyses. There are differences in the levels of expression of the three homoeologues of <it>TaRAD51 </it>and <it>TaDMC1 </it>as determined by QRT-PCR and if these differences are reflected at the protein level, bread wheat may be more dependent upon a particular homoeologue to achieve full fertility than all three equally.</p
Influence of microenvironment on engraftment of transplanted β-cells
Pancreatic islet transplantation into the liver provides a possibility to treat selected patients with brittle type 1 diabetes mellitus. However, massive early β-cell death increases the number of islets needed to restore glucose homeostasis. Moreover, late dysfunction and death contribute to the poor long-term results of islet transplantation on insulin independence. Studies in recent years have identified early and late challenges for transplanted pancreatic islets, including an instant blood-mediated inflammatory reaction when exposing human islets to the blood microenvironment in the portal vein and the low oxygenated milieu of islets transplanted into the liver. Poor revascularization of remaining intact islets combined with severe changes in the gene expression of islets transplanted into the liver contributes to late dysfunction. Strategies to overcome these hurdles have been developed, and some of these interventions are now even tested in clinical trials providing a hope to improve results in clinical islet transplantation. In parallel, experimental and clinical studies have, based on the identified problems with the liver site, evaluated the possibility of change of implantation organ in order to improve the results. Site-specific differences clearly exist in the engraftment of transplanted islets, and a more thorough characterization of alternative locations is needed. New strategies with modifications of islet microenvironment with cells and growth factors adhered to the islet surface or in a surrounding matrix could be designed to intervene with site-specific hurdles and provide possibilities to improve future results of islet transplantation
SBP-domain transcription factors as possible effectors of cryptochrome-mediated blue light signalling in the moss Physcomitrella patens
Cryptochromes are blue light absorbing photoreceptors found in many organisms and involved in numerous developmental processes. At least two highly similar cryptochromes are known to affect branching during gametophytic development in the moss Physcomitrella patens. We uncovered a relationship between these cryptochromes and the expression of particular members of the SBP-box genes, a plant specific transcription factor family. Transcript levels of the respective moss SBP-box genes, all belonging to the LG1-subfamily, were found to be dependent, albeit not exclusively, on blue light. Moreover, disruptant lines generated for two moss representatives of this SBP-box gene subfamily, both showed enhanced caulonema side branch formation, a phenotype opposite to that of the ppcry1a/1b double disruptant line. In this report we show that PpCRY1a and PpCRY1b act negatively on the transcript levels of several related moss SBP-box genes and that at least PpSBP1 and PpSBP4 act as negative regulators of side branch formation
In Silico and Biochemical Analysis of Physcomitrella patens Photosynthetic Antenna: Identification of Subunits which Evolved upon Land Adaptation
Background. In eukaryotes the photosynthetic antenna system is composed of subunits encoded by the light harvesting complex (Lhc) multigene family. These proteins play a key role in photosynthesis and are involved in both light harvesting and photoprotection. The moss Physcomitrella patens is a member of a lineage that diverged from seed plants early after land colonization and therefore by studying this organism, we may gain insight into adaptations to the aerial environment.
Principal Findings. In this study, we characterized the antenna protein multigene family in Physcomitrella patens, by sequence analysis as well as biochemical and functional investigations. Sequence identification and analysis showed that some antenna polypeptides, such as Lhcb3 and Lhcb6, are present only in land organisms, suggesting they play a role in adaptation to the sub-aerial environment. Our functional analysis which showed that photo-protective mechanisms in Physcomitrella patens are very similar to those in seed plants fits with this hypothesis. In particular, Physcomitrella patens also activates Non Photochemical Quenching upon illumination, consistent with the detection of an ortholog of the PsbS protein. As a further adaptation to terrestrial conditions, the content of Photosystem I low energy absorbing chlorophylls also increased, as demonstrated by differences in Lhca3 and Lhca4 polypeptide sequences, in vitro reconstitution experiments and low temperature fluorescence spectra.
Conclusions. This study highlights the role of Lhc family members in environmental adaptation and allowed proteins associated with mechanisms of stress resistance to be identified within this large family
- …
