1,621 research outputs found
Building a participatory national consensus on wastewater reclamation and reuse in Palestine
Water scarcity is a major constraint for economic and social development and sustainability of the agricultural sector in Palestine. Rapid population growth and increasing dominance of Israeli occupation over the Palestinian water and land resources exacerbate this problem. Wastewater reuse in agriculture is a potential non-conventional water resource that needs better utilization. Our research studied the enabling environment and the political economy of wastewater reclamation and reuse in Palestine. The research team adopted participatory approach that was based on active involvement of all stakeholders in the various phases and activities of this project. The team organized large
number of public meetings and national workshops that gathered policy makers as well as representatives of the
stakeholder community. The team also implemented a questionnaire survey to study the public perceptions toward
wastewater reuse. The research was concluded by a national symposium that gathered more than 200 persons from
this community. The major research findings show a national consensus on the importance of wastewater
reclamation and reuse in irrigated agriculture. The results show positive knowledge and perceptions of all
stakeholders towards reuse of reclaimed wastewater. It also shows that there is a big gap between various
institutions related to the subject. It also shows poor collaboration between the academic/research institutions and
policy making. The research also emphasizes the importance of onsite systems, especially grey water, for wastewater treatment and reuse as they are low cost and do not require permission of Israeli occupation. The research has a substantial policy impact as it opened opportunities for participatory approaches and dialogue between policy makers and the entire stakeholders’ communit
Non-equilibrium dynamics of gene expression and the Jarzynski equality
In order to express specific genes at the right time, the transcription of
genes is regulated by the presence and absence of transcription factor
molecules. With transcription factor concentrations undergoing constant
changes, gene transcription takes place out of equilibrium. In this paper we
discuss a simple mapping between dynamic models of gene expression and
stochastic systems driven out of equilibrium. Using this mapping, results of
nonequilibrium statistical mechanics such as the Jarzynski equality and the
fluctuation theorem are demonstrated for gene expression dynamics. Applications
of this approach include the determination of regulatory interactions between
genes from experimental gene expression data
Dynamics of gene expression and the regulatory inference problem
From the response to external stimuli to cell division and death, the
dynamics of living cells is based on the expression of specific genes at
specific times. The decision when to express a gene is implemented by the
binding and unbinding of transcription factor molecules to regulatory DNA.
Here, we construct stochastic models of gene expression dynamics and test them
on experimental time-series data of messenger-RNA concentrations. The models
are used to infer biophysical parameters of gene transcription, including the
statistics of transcription factor-DNA binding and the target genes controlled
by a given transcription factor.Comment: revised version to appear in Europhys. Lett., new titl
Disseminated Toxoplasmosis in a Patient with Non-Hodgkin Lymphoma
Abstract : Toxoplasmosis is a well-recognized opportunistic disease in HIV-infected individuals that is caused by the reactivation of a previous infection, primarily in the central nervous system, during profound immunodeficiency. Toxoplasmosis has been described more rarely in patients with cancer and chemotherapy. We report a case of a patient with a history of chemotherapy for non-Hodgkin lymphoma who developed pain and progressive paresthesia of the right arm 6 weeks after remission. Relapsing lymphoma was suspected, and steroid and radiation treatment were initiated, but the patient died 5 days later due to multiple organ failure. Autopsy revealed disseminated toxoplasmosis. This case illustrates that toxoplasmosis should be suspected in patients with neoplastic disease, especially lymphomas, who present with unexplained neurologic, pulmonary, or febrile symptoms during or after chemotherap
Spongiibacter marinus gen. nov., sp. nov., a halophilic marine bacterium isolated from the boreal sponge Haliclona sp. 1
Strain HAL40bT was isolated from the marine sponge Haliclona sp. 1 collected at the Sula Ridge off the Norwegian coast and characterized by physiological, biochemical and phylogenetic analyses. The isolate was a small rod with a polar flagellum. It was aerobic, Gram-negative and oxidase- and catalase-positive. Optimal growth was observed at 20–30 °C, pH 7–9 and in 3 % NaCl. Substrate utilization tests were positive for arabinose, Tween 40 and Tween 80. Enzyme tests were positive for alkaline phosphatase, esterase lipase (C8), leucine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase and N-acetyl-β-glucosaminidase. The predominant cellular fatty acid was C17 : 1 ω8, followed by C17 : 0 and C18 : 1 ω7. Analysis by matrix-assisted laser desorption/ionization time-of-flight MS was used to characterize the strain, producing a characteristic low-molecular-mass protein pattern that could be used as a fingerprint for identification of members of this species. The DNA G+C content was 69.1 mol%. Phylogenetic analysis supported by 16S rRNA gene sequence comparison classified the strain as a member of the class Gammaproteobacteria. Strain HAL40bT was only distantly related to other marine bacteria including Neptunomonas naphthovorans and Marinobacter daepoensis (type strain sequence similarity >90 %). Based on its phenotypic, physiological and phylogenetic characteristics, it is proposed that the strain should be placed into a new genus as a representative of a novel species, Spongiibacter marinus gen. nov., sp. nov.; the type strain of Spongiibacter marinus is HAL40bT (=DSM 17750T =CCUG 54896T)
Phase-Locked Spatial Domains and Bloch Domain Walls in Type-II Optical Parametric Oscillators
We study the role of transverse spatial degrees of freedom in the dynamics of
signal-idler phase locked states in type-II Optical Parametric Oscillators.
Phase locking stems from signal-idler polarization coupling which arises if the
cavity birefringence and/or dichroism is not matched to the nonlinear crystal
birefringence. Spontaneous Bloch domain wall formation is theoretically
predicted and numerically studied. Bloch walls connect, by means of a
polarization transformation, homogeneous regions of self-phase locked
solutions. The parameter range for their existence is analytically found. The
polarization properties and the dynamics of walls in one- and two transverse
spatial dimensions is explained. Transition from Bloch to Ising walls is
characterized, the control parameter being the linear coupling strength. Wall
dynamics governs spatiotemporal dynamical states of the system, which include
transient curvature driven domain growth, persistent dynamics dominated by
spiraling defects for Bloch walls, and labyrinthine pattern formation for Ising
walls.Comment: 27 pages, 16 figure
The Uncertainty in Newton's Constant and Precision Predictions of the Primordial Helium Abundance
The current uncertainty in Newton's constant, G_N, is of the order of 0.15%.
For values of the baryon to photon ratio consistent with both cosmic microwave
background observations and the primordial deuterium abundance, this
uncertainty in G_N corresponds to an uncertainty in the primordial 4He mass
fraction, Y_P, of +-1.3 x 10^{-4}. This uncertainty in Y_P is comparable to the
effect from the current uncertainty in the neutron lifetime, which is often
treated as the dominant uncertainty in calculations of Y_P. Recent measurements
of G_N seem to be converging within a smaller range; a reduction in the
estimated error on G_N by a factor of 10 would essentially eliminate it as a
source of uncertainty in the calculation of the primordial 4He abundance.Comment: 3 pages, no figures, fixed typos, to appear in Phys. Rev.
Stochastic association of neighboring replicons creates replication factories in budding yeast
Peer reviewedPublisher PD
Lunar Exploration Orbiter (LEO): Providing a Globally Covered, Highly Resolved, Integrated Geological, Geochemical and Gephysical Data Base of the Moon
The German initiative for the Lunar Exploration Orbiter (LEO) originated from the
national conference “Exploration of our Solar System”, held in Dresden in November 2006. Major result of this conference was that the Moon is of high interest for the scientific community for various reasons, it is affordable to perform an orbiting mission to Moon and it insures technological and scientific progress necessary to assist further exploration activities of our Solar System. Based on scientific proposals elaborated by 50 German scientists in January 2007, a preliminary payload of 12 instruments was defined. Further analysis were initated by DLR in the frame of two industry contracts, to perform a phase-zero mission definition.
The Moon, our next neighbour in the Solar System is the first choice to learn, how to work and live without the chance of immediate support from earth and to get prepared for further and farther exploration missions. We have to improve our
scientific knowledge base with respect to the Moon applying modern and state of the art research tools and methods. LEO is planed to be launched in 2012 and shall orbit the Moon for about four years in a low altitude orbit
- …
