21 research outputs found

    Interventionelle Therapieoptionen der malignen intestinalen Obstruktion

    Full text link

    Feral genetically modified herbicide tolerant oilseed rape from seed import spills: are concerns scientifically justified?

    Get PDF
    One of the concerns surrounding the import (for food and feed uses or processing) of genetically modified herbicide tolerant (GMHT) oilseed rape is that, through seed spillage, the herbicide tolerance (HT) trait will escape into agricultural or semi-natural habitats, causing environmental or economic problems. Based on these concerns, three EU countries have invoked national safeguard clauses to ban the marketing of specific GMHT oilseed rape events on their territory. However, the scientific basis for the environmental and economic concerns posed by feral GMHT oilseed rape resulting from seed import spills is debatable. While oilseed rape has characteristics such as secondary dormancy and small seed size that enable it to persist and be redistributed in the landscape, the presence of ferals is not in itself an environmental or economic problem. Crucially, feral oilseed rape has not become invasive outside cultivated and ruderal habitats, and HT traits are not likely to result in increased invasiveness. Feral GMHT oilseed rape has the potential to introduce HT traits to volunteer weeds in agricultural fields, but would only be amplified if the herbicides to which HT volunteers are tolerant were used routinely in the field. However, this worst-case scenario is most unlikely, as seed import spills are mostly confined to port areas. Economic concerns revolve around the potential for feral GMHT oilseed rape to contribute to GM admixtures in non-GM crops. Since feral plants derived from cultivation (as distinct from import) occur at too low a frequency to affect the coexistence threshold of 0.9% in the EU, it can be concluded that feral GMHT plants resulting from seed import spills will have little relevance as a potential source of pollen or seed for GM admixture. This paper concludes that feral oilseed rape in Europe should not be routinely managed, and certainly not in semi-natural habitats, as the benefits of such action would not outweigh the negative effects of management

    Gut microbial disruption in critically Ill patients with COVID-19-associated pulmonary aspergillosis.

    No full text
    Objectives: COVID-19 disease can be exacerbated by Aspergillus superinfection (CAPA). However, the causes of CAPA are not yet fully understood. Recently, alterations in the gut microbiome have been associated with a more complicated and severe disease course in COVID-19 patients, most likely due to immunological mechanisms. The aim of this study was to investigate a potential association between severe CAPA and alterations in the gut and bronchial microbial composition. Methods: We performed 16S rRNA gene amplicon sequencing of stool and bronchial samples from a total of 16 COVID-19 patients with CAPA and 26 patients without CAPA. All patients were admitted to the intensive care unit. Results were carefully tested for potentially confounding influences on the microbiome during hospitalization. Results: We found that late in COVID-19 disease, CAPA patients exhibited a trend towards reduced gut microbial diversity. Furthermore, late-stage patients with CAPA superinfection exhibited an increased abundance of Staphylococcus epidermidis in the gut which was not found in late non-CAPA cases or early in the disease. The analysis of bronchial samples did not yield significant results. Conclusions: This is the first study showing that alterations in the gut microbiome accompany severe CAPA and possibly influence the host’s immunological response. In particular, an increase in Staphylococcus epidermidis in the intestine could be of importance
    corecore