6,317 research outputs found
Time-dependent Density Functional calculation of e-H scattering
Phase shifts for single-channel elastic electron-atom scattering are derived
from time-dependent density functional theory. The H ion is placed in a
spherical box, its discrete spectrum found, and phase shifts deduced.
Exact-exchange yields an excellent approximation to the ground-state Kohn-Sham
potential, while the adiabatic local density approximation yields good singlet
and triplet phase shifts.Comment: 5 pages, 4 figures, 1 tabl
Discriminating cool-water from warm-water carbonates and their diagenetic environments using element geochemistry: the Oligocene Tikorangi Formation (Taranaki Basin) and the dolomite effect
Fields portrayed within bivariate element plots have been used to distinguish between carbonates formed in warm- (tropical) water and cool- (temperate) water depositional settings. Here, element concentrations (Ca, Mg, Sr, Na, Fe, and Mn) have been determined for the carbonate fraction of bulk samples from the late Oligocene Tikorangi Formation, a subsurface, mixed dolomite-calcite, cool-water limestone sequence in Taranaki Basin, New Zealand. While the occurrence of dolomite is rare in New Zealand Cenozoic carbonates, and in cool-water carbonates more generally, the dolomite in the Tikorangi carbonates is shown to have a dramatic effect on the "traditional" positioning of cool-water limestone fields within bivariate element plots. Rare undolomitised, wholly calcitic carbonate samples in the Tikorangi Formation have the following average composition: Mg 2800 ppm; Ca 319 100 ppm; Na 800 ppm; Fe 6300 ppm; Sr 2400 ppm; and Mn 300 ppm. Tikorangi Formation dolomite-rich samples (>15% dolomite) have average values of: Mg 53 400 ppm; Ca 290 400 ppm; Na 4700 ppm; Fe 28 100 ppm; Sr 5400 ppm; and Mn 500 ppm. Element-element plots for dolomite-bearing samples show elevated Mg, Na, and Sr values compared with most other low-Mg calcite New Zealand Cenozoic limestones. The increased trace element contents are directly attributable to the trace element-enriched nature of the burial-derived dolomites, termed here the "dolomite effect". Fe levels in the Tikorangi Formation carbonates far exceed both modern and ancient cool-water and warm-water analogues, while Sr values are also higher than those in modern Tasmanian cool-water carbonates, and approach modern Bahaman warm-water carbonate values. Trace element data used in conjunction with more traditional petrographic data have aided in the diagenetic interpretation of the carbonate-dominated Tikorangi sequence. The geochemical results have been particularly useful for providing more definitive evidence for deep burial dolomitisation of the deposits under the influence of marine-modified pore fluids
CPI-17 drives oncogenic Ras signaling in human melanomas via Ezrin-Radixin-Moesin family proteins
Hyperactive Ras signaling has strong oncogenic effects causing several different forms of cancer. Hyperactivity is frequently induced by mutations within Ras itself, which account for up to 30% of all human cancers. In addition, hyperactive Ras signaling can also be triggered independent of Ras by either mutation or by misexpression of various upstream regulators and immediate downstream effectors. We have previously reported that C-kinase potentiated protein phosphatase-1 inhibitor of 17 kDa (CPI-17) can drive Ras activity and promote tumorigenic transformation by inhibition of the tumor suppressor Merlin. We now describe an additional element of this oncogenic mechanism in the form of the ezrin-radixin-moesin (ERM) protein family, which exhibits opposing roles in Ras activity control. Thus, CPI-17 drives Ras activity and tumorigenesis in a two-fold way; inactivation of the tumor suppressor merlin and activation of the growth promoting ERM family. The in vivo significance of this oncogenic switch is highlighted by demonstrating CPI-17’s involvement in human melanoma pathogenesis
Charge-Independence Breaking in the Two-Pion-Exchange Nucleon-Nucleon Force
Charge-independence breaking due to the pion-mass difference in the (chiral)
two-pion-exchange nucleon-nucleon force is investigated. A general argument
based on symmetries is presented that relates the charge-symmetric part of that
force to the proton-proton case. The static potential linear in that mass
difference is worked out as an explicit example by means of Feynman diagrams,
and this confirms the general argument.Comment: 10 pages, latex, 1 figure -- epsfig.sty required -- To appear in
Phys. Rev.
A planar calculus for infinite index subfactors
We develop an analog of Jones' planar calculus for II_1-factor bimodules with
arbitrary left and right von Neumann dimension. We generalize to bimodules
Burns' results on rotations and extremality for infinite index subfactors.
These results are obtained without Jones' basic construction and the resulting
Jones projections.Comment: 56 pages, many figure
Strings on conifolds from strong coupling dynamics: quantitative results
Three quantitative features of string theory on AdS_5 x X_5, for any
(quasi)regular Sasaki-Einstein X_5, are recovered exactly from an expansion of
field theory at strong coupling around configurations in the moduli space of
vacua. These configurations can be thought of as a generalized matrix model of
(local) commuting matrices. First, we reproduce the spectrum of scalar
Kaluza-Klein modes on X_5. Secondly, we recover the precise spectrum of BMN
string states, including a nontrivial dependence on the volume of X_5. Finally,
we show how the radial direction in global AdS_5 emerges universally in these
theories by exhibiting states dual to AdS giant gravitons.Comment: 1+28 pages. 1 figur
Resolving the M2-brane
We construct deformed, T^2 wrapped, rotating M2-branes on a resolved cone
over Q^{1,1,1} and Q^{1,1,1}/Z_2, as well as on a product of two Eguchi-Hanson
instantons. All worldvolume directions of these supersymmetric and regular
solutions are fibred over the transverse space. These constitute gravity duals
of D=3, N=2 gauge theories. In particular, the deformed M2-brane on a resolved
cone over Q^{1,1,1} and the S^1 wrapped M2-brane on a resolved cone over
Q^{1,1,1}/Z_2 provide explicit realizations of holographic renormalization
group flows in M-theory for which both conformal and Lorentz symmetries are
broken in the IR region and restored in the UV limit. These solutions can be
dualized to supersymmetric type IIB pp-waves, which are rendered non-singular
either by additional flux or a twisted time-like direction.Comment: Latex, 23 pages, references adde
Deconvolution of ASCA X-ray data: II. Radial temperature and metallicity profiles for 106 galaxy clusters
In Paper-I we presented a methodology to recover the spatial variations of
properties of the intracluster gas from ASCA X-ray satellite observations of
galaxy clusters. We verified the correctness of this procedure by applying it
to simulated cluster datasets which we had subjected to the various
contaminants common in ASCA data. In this paper we present the results which we
obtain when we apply this method to real galaxy cluster observations. We
determine broad-band temperature and cooling-flow mass-deposition rates for the
106 clusters in our sample, and obtain temperature, abundance and emissivity
profiles (i.e. at least two annular bins) for 98 of these clusters. We find
that 90 percent of these temperature profiles are consistent with isothermality
at the 3-sigma confidence level. This conflicts with the prevalence of
steeply-declining cluster temperature profiles found by Markevitch et al.
(1998) from a sample of 30 clusters. In Paper-III (in preparation) we utilise
our temperature and emissivity profiles to determine radial hydrostatic-mass
properties for a subsample of the clusters presented in this paper.Comment: MNRAS, accpeted. Postscript copy of paper and individual postscript
files for plots in Appendix B can be obtained from:
http://www-xray.ast.cam.ac.uk/~da
Exact-exchange density-functional calculations for noble-gas solids
The electronic structure of noble-gas solids is calculated within density
functional theory's exact-exchange method (EXX) and compared with the results
from the local-density approximation (LDA). It is shown that the EXX method
does not reproduce the fundamental energy gaps as well as has been reported for
semiconductors. However, the EXX-Kohn-Sham energy gaps for these materials
reproduce about 80 % of the experimental optical gaps. The structural
properties of noble-gas solids are described by the EXX method as poorly as by
the LDA one. This is due to missing Van der Waals interactions in both, LDA and
EXX functionals.Comment: 4 Fig
Inducing safer oblique trees without costs
Decision tree induction has been widely studied and applied. In safety applications, such as determining whether a chemical process is safe or whether a person has a medical condition, the cost of misclassification in one of the classes is significantly higher than in the other class. Several authors have tackled this problem by developing cost-sensitive decision tree learning algorithms or have suggested ways of changing the
distribution of training examples to bias the decision tree learning process so as to take account of costs. A prerequisite for applying such algorithms is the availability of costs of misclassification.
Although this may be possible for some applications, obtaining reasonable estimates of costs of misclassification is not easy in the area of safety.
This paper presents a new algorithm for applications where the cost of misclassifications cannot be quantified, although the cost of misclassification in one class is known to be significantly higher than in another class. The algorithm utilizes linear discriminant analysis to identify oblique relationships between continuous attributes and then carries out an appropriate modification to ensure that the resulting tree errs on the side of safety. The algorithm is evaluated with respect to one of the best known cost-sensitive algorithms (ICET), a well-known oblique decision tree algorithm (OC1) and an algorithm that utilizes robust linear programming
- …
